Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Comet Tempel 1 Went Back to Sleep

14.07.2005


Astronomers Having Used ESO Telescopes Start Analysing Unique Dataset on the Comet Following the Deep Impact Mission



Ten days after part of the Deep Impact spacecraft plunged onto Comet Tempel 1 with the aim to create a crater and expose pristine material from beneath the surface, astronomers are back in the ESO Offices in Santiago, after more than a week of observing at the ESO La Silla Paranal Observatory. In this unprecedented observing campaign - among the most ambitious ever conducted by a single observatory - the astronomers have collected a large amount of invaluable data on this comet.

The astronomers have now started the lengthy process of data reduction and analysis. Being all together in a single place, and in close contacts with the space mission’ scientific team, they will try to assemble a clear picture of the comet and of the impact.


The ESO observations were part of a worldwide campaign to observe this unique experiment. During the campaign, ESO was connected by phone, email, and videoconference with colleagues in all major observatories worldwide, and data were freely exchanged between the different groups. This unique collaborative spirit provides astronomers with data taken almost around the clock during several days and this, with the largest variety of instruments, making the Deep Impact observing campaign one of the most successful of its kind, and thereby, ensuring the greatest scientific outcome.

From the current analysis, it appears most likely that the impactor did not create a large new zone of activity and may have failed to liberate a large quantity of pristine material from beneath the surface.

The images obtained at the VLT show that after the impact, the morphology of Comet Tempel 1 had changed, with the appearance of a new plume-like structure, produced by matter being ejected with a speed of about 700 to 1000 km/h (see ESO PR Photo 23/05). This structure, however, diffused away in the following days, being more and more diluted and less visible, the comet taking again the appearance it had before the impact. Further images obtained with, among others, the adaptive optics NACO instrument on the Very Large Telescope, showed the same jets that were visible prior to impact, demonstrating that the comet activity survived widely unaffected by the spacecraft crash.

The study of the gas in Comet Tempel 1 (see "Looking for Molecules"), made with UVES on Kueyen (UT2 of the VLT), reveals a small flux increase the first night following the impact. At that time, more than 17 hours after the impact, the ejected matter was fading away but still measurable thanks to the large light collecting power of the VLT. The data accumulated during 10 nights around the impact have provided the astronomers with the best ever time series of optical spectra of a Jupiter Family comet, with a total of more than 40 hours of exposure time. This unique data set has already allowed the astronomers to characterize the normal gas activity of the comet and also to detect, to their own surprise, an active region. This active region is not related to the impact as it was also detected in data collected in June. It shows up about every 41 hours, the rotation period of the comet nucleus determined by the Deep Impact spacecraft. Exciting measurements of the detailed chemical composition (such as the isotopic ratios) of the material released by the impact as well as the one coming from that source will be performed by the astronomers in the next weeks and months.

Further spectropolarimetric observations with FORS1 have confirmed the surface of the comet to be rather evolved - as expected - but more importantly, that the dust is not coming from beneath the surface. These data constitute another unique high-quality data set on comets.

Comet Tempel 1 may thus be back to sleep but work only starts for the astronom

More information

On July 4, 2005, the NASA Deep Impact spacecraft launched a 360 kg impactor onto Comet 9P/Tempel 1. This experiment is seen by many as the first opportunity to study the crust and the interior of a comet, revealing new information on the early phases of the Solar System. ESO actively participated in pre- and post-impact observations. Apart from a long-term monitoring of the comet, for two days before and six days after, all major ESO telescopes - i.e. the four Unit Telescopes of the Very Large Telescope Array at Paranal, as well as the 3.6m, 3.5m NTT and the 2.2m ESO/MPG telescopes at La Silla - have been observing Comet 9P/Tempel 1, in a coordinated fashion and in very close collaboration with the space mission’ scientific team. The simultaneous use of all ESO telescopes with all together 10 instruments has an enormous potential, since it allows for observation of the comet at different wavelengths in the visible and infrared by imaging, spectroscopy and polarimetry. Such multiplexing capabilities of the instrumentation do not exist at any other observatory in the world.

More information is available at the dedicated Deep Impact at ESO web site.

Notes

[1]: Leading scientists of the ESO DI campaign: H. Boehnhardt (MPI, Lindau, Germany), O. Hainaut (ESO), H.U. Kaufl (ESO), H. Rauer (DLR, Germany).

Members of the ESO DI observing team on site: N. Ageorges (ESO, Chile), S. Bagnulo (ESO, Chile), L. Barrera (UMCE, Chile), H. Boehnhardt (MPS, Germany), T. Bonev (Astr. Inst. Sofia, Bulgaria) , O. Hainaut (ESO, Chile), E. Jehin (ESO, Chile), H.U. Kaufl (ESO, Germany), F. Kerber (ESO, Germany), J. Manfroid (U.Liège, Belgium), O. Marco (ESO, Chile), E. Pantin (CEA, France), E. Pompei (ESO, Chile), H. Rauer (DLR, Germany), C. Sterken (Vrije Universiteit Brussel, Belgium), G.P. Tozzi (Obs. Arcetri, Italy), M. Weiler (DLR, Germany)

Members of the ESO DI observing team not on site: C. Arpigny (U.Liège, Belgium), A. Cochran (McDonald, USA), C. Delahodde (Univ. Florida, USA), Y. Fernandez (Univ. Hawaii, USA), D. Hutseme kers (U.Liège, Belgium), H. Kawakita (Gunma, Japan), J. Knollenberg (DLR, Germany), L. Kolokolova (Univ. Maryland, USA), M. Kretlow (MPS, Germany), M. Kueppers (MPS, Germany), E. Kuehrt (DLR, Germany), L. Lara (IAA, Spain), J. Licandro (IAC, Spain), C. Lisse (Univ. Maryland, USA), K . Meech (U.Hawaii, USA), R. Schulz (ESTEC, The Netherlands), G. Schwehm (ESTEC, The Netherlands), M. Sterzik (ESO, Chile), J.A. Stüwe (Leide n, The Netherlands), I. Surdej (Univ. Liège, Belgium and ESO, Garching), D. Wooden (Ames, USA), J.-M. Zucconi (Besancon, France).

[2]: This image is a of the CN (388 nm) spectrum of comet Tempel 1 observed from Paranal just before the impact (in black), the 03 of July (at UT 02:00), and the 04 of July at UT 24:00 (in red), which is the first observation after the impact. An artificial wavelength shift has been added for clarity. The post impact spectrum is clearly higher than the pre-impact one.

Olivier Hainaut | EurekAlert!
Further information:
http://www.hq.eso.org/outreach/press-rel/pr-2005/pr-19-05.html
http://www.eso.org

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>