Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SSETI Express sets off

14.07.2005


SSETI Express, the first spacecraft to be designed and built by European students, has set off on the first stage of its journey into space. It left ESTEC in the Netherlands yesterday and is now on its way to Plesetsk, the Russian cosmodrome from where it will be launched on 25 August.




Its journey to Russia will take considerably longer than its journey into space. It left ESTEC, ESA’s European Space Research and Technology Centre in the Netherlands, by special truck yesterday afternoon and arrived at Hahn airport near Frankfurt this morning. The next step of its journey will take place tomorrow, when it is sent by cargo plane to Moscow.

Before it can continue its journey by special military plane to Plesetsk, in the Archangel region of Russia, it has to be cleared through customs. The cargo is classed as ’dangerous goods’ because the spacecraft’s pressure management system contains pyrotechnics and both the spacecraft and its payload contain batteries.


Students do not have much longer to wait, however, for their ‘baby’ to be launched into low-Earth Sun synchronous orbit, 686 km above the Earth. Liftoff, by a Cosmos 3M launcher, is scheduled for 09:52 local Moscow time (07:52 CEST) on Thursday 25 August. Then will follow another anxious interval as students wait for the acquisition of the first signals from SSETI Express. Spacecraft operations are planned to begin in early September.

In just 18 months, 15 teams of students, from 10 universities in nine countries have managed to design, build and test SSETI Express. It has not always been easy and students have worked nights, weekends and in their holidays to complete the project.

“The spacecraft is a credit to each and every one of the dozens of student and radio amateurs involved in its design, development, integration and testing. We are all very excited about the upcoming flight,” says Neil Melville, Project Manager for SSETI Express.

SSETI Express is a small spacecraft, similar in size and shape to a washing machine. Weighing about 62 kg it has a payload of 24 kg. On board the student-built spacecraft will be three pico-satellites, extremely small satellites that weigh around 1 kg each. These will be deployed once SSETI Express is in orbit, marking a first not only for the students but also for the space sector.

“The primary objective of SSETI Express has already been met many times over; the educational value of this experience is vast and I’m sure the benefits will be felt not only by the many students working on this project but also in future SSETI, and related, projects throughout Europe,” added Melville.

The spacecraft is not only an educational achievement - SSETI Express will be a fully operational satellite. As well as launching the CubeSat pico-satellites it will take pictures of the Earth, function as a radio transponder for the global amateur radio community, and act as a test-bed and technology demonstrator for the even more adventurous student spacecraft planned for the future. In 2008 ESEO, a European Student Earth Orbiter, will be launched. To be followed by a European Student Moon Orbiter sometime between 2010 and 2012.

Despite difficulties and setbacks, by 11 April this year the spacecraft was fully integrated at ESTEC and ready for testing. Before ESA experts could declare SSETI Express ‘space-worthy’ the spacecraft underwent protoflight three-axis sinusoidal, quasi-static and random vibration tests; thermal vacuum tests including bake-out and four thermal cycles, electromagnetic compatibility tests and extensive testing of all the spacecraft’s functions. By 27 June it was declared ready for flight.

As the students quickly learnt, however, not all the work needed to prepare a satellite goes on in laboratories. Legal aspects have to be considered, public relations are important and administrative work is vital.

According to Marie de Cock, SSETI Programme Coordinator at ESA: “Packing, shipping, insuring and preparing for customs has been much more complex than we expected and is an aspect of a space mission that we had not really foreseen, nor did we realise its importance. Still, we have all learnt from this experience and we will be ready for future missions”.

Now all the students have to do is wait – anxiously – for liftoff. Just three students and one radio amateur can take part in the launch campaign at Plesetsk: Jõrg Schaefer from Germany, responsible for system engineering and flight safety; Karl Kaas Laursen from Denmark, responsible for checkout and preparation of on-board computer, attitude control, camera and CubeSat passengers; and Sascha Tietz from Germany responsible for checkout and preparation of propulsion, instrument control and CubeSat deployment tubes. They will be joined by Graham Shirville, a radio amateur from the UK, who will ensure that both communications systems and the test ground station are ready.

The rest of the SSETI Express team will watch a live transmission of the launch at specially organised events in their home countries. It will be a nail-biting but once in a lifetime moment. As student Karl Kaas Laursen says, “We will be waiting to see if we have built something that can survive anything – the launch and the harsh space environment. SSETI Express will do it, just watch...”

Philippe Willekens | EurekAlert!
Further information:
http://www.esa.int/esaCP/SEMPQH6DIAE_index_0.html

More articles from Physics and Astronomy:

nachricht Gamma rays will reach beyond the limits of light
23.10.2017 | Chalmers University of Technology

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>