Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue findings support earlier nuclear fusion experiments

14.07.2005


Researchers at Purdue University have new evidence supporting earlier findings by other scientists who designed an inexpensive "tabletop" device that uses sound waves to produce nuclear fusion reactions.



The technology, in theory, could lead to a new source of clean energy and a host of portable detectors and other applications.

The new findings were detailed in a peer-reviewed paper appearing in the May issue of the journal Nuclear Engineering and Design. The paper was written by Yiban Xu, a post-doctoral research associate in the School of Nuclear Engineering, and Adam Butt, a graduate research assistant in both nuclear engineering and the School of Aeronautics and Astronautics.


A key component of the experiment was a glass test chamber about the size of two coffee mugs filled with a liquid called deuterated acetone, which contains a form of hydrogen known as deuterium, or heavy hydrogen. The researchers exposed the test chamber to subatomic particles called neutrons and then bombarded the liquid with a specific frequency of ultrasound, which caused cavities to form into tiny bubbles. The bubbles then expanded to a much larger size before imploding, apparently with enough force to cause thermonuclear fusion reactions.

Fusion reactions emit neutrons that fall within a specific energy range of 2.5 mega-electron volts, which was the level of energy seen in neutrons produced in the experiment. The experiments also yielded a radioactive material called tritium, which is another product of fusion, Xu and Butt said.

The Purdue research began two years ago, and the findings represent the first confirmation of findings reported earlier by Rusi Taleyarkhan. Now at Purdue, Taleyarkhan, the Arden L. Bement Jr. Professor of Nuclear Engineering, discovered the fusion phenomenon while he was a scientist working at the Oak Ridge National Laboratory.

"The two key signatures for a fusion reaction are emission of neutrons in the range of 2.5 MeV and production of tritium, both of which were seen in these experiments," Xu said.

The same results were not seen when the researchers ran control experiments with normal acetone, providing statistically significant evidence for the existence of fusion reactions.

"The control experiments didn’t show anything," Xu said. "We changed just one parameter, substituting the deuterated acetone with normal acetone."

Deuterium contains one proton and one neutron in its nucleus. Normal hydrogen contains only one proton in its nucleus.

Taleyarkhan led a research team that first reported the phenomenon in a 2002 paper published in the journal Science. Those researchers later conducted additional research at the Oak Ridge National Laboratory, Rensselaer Polytechnic Institute and the Russian Academy of Sciences and wrote a follow-up paper that appeared in the journal Physical Review E in 2004, just after Taleyarkhan had come to Purdue.

Scientists have long known that high-frequency sound waves cause the formation of cavities and bubbles in liquid, a process known as "acoustic cavitation," and that those cavities then implode, producing high temperatures and light in a phenomenon called "sonoluminescence."

In the Purdue research, however, the liquid was "seeded" with neutrons before it was bombarded with sound waves. Some of the bubbles created in the process were perfectly spherical, and they imploded with greater force than irregular bubbles. The research yielded evidence that only spherical bubbles implode with a force great enough to cause deuterium atoms to fuse together, similar to the way in which hydrogen atoms fuse in stars to create the thermonuclear furnaces that make stars shine.

Nuclear fusion reactors have historically required large, expensive machines, but acoustic cavitation devices might be built for a fraction of the cost. Researchers have estimated that temperatures inside the imploding bubbles reach 10 million degrees Celsius and pressures comparable to 1,000 million earth atmospheres at sea level.

Xu and Butt now work in Taleyarkhan’s lab, but all of the research on which the new paper is based was conducted before they joined the lab, and the research began at Purdue before Taleyarkhan had become a Purdue faculty member. The two researchers used an identical "carbon copy" of the original test chamber designed by Taleyarkhan, and they worked under the sponsorship and direction of Lefteri Tsoukalas, head of the School of Nuclear Engineering.

Although the test chamber was identical to Taleyarkhan’s original experiment, and the Purdue researchers were careful to use deuterated acetone, they derived the neutrons from a less-expensive source than the Oak Ridge researchers. The scientists working at Oak Ridge seeded the cavities with a "pulse neutron generator," an apparatus that emits rapid pulses of neutrons. Xu and Butt derived neutrons from a radioactive material that constantly emits neutrons, and they simply exposed the test chamber to the material.

Development of a low-cost thermonuclear fusion generator would offer the potential for a new, relatively safe and low-polluting energy source. Whereas conventional nuclear fission reactors make waste products that take thousands of years to decay, the waste products from fusion plants would be short-lived, decaying to non-dangerous levels in a decade or two. For the same unit mass of fuel, a fusion power plant would produce 10 times more energy than a fission reactor, and because deuterium is contained in seawater, a fusion reactor’s fuel supply would be virtually infinite. A cubic kilometer of seawater would contain enough heavy hydrogen to provide a thousand years’ worth of power for the United States.

Such a technology also could result in a new class of low-cost, compact detectors for security applications that use neutrons to probe the contents of suitcases; devices for research that use neutrons to analyze the molecular structures of materials; machines that cheaply manufacture new synthetic materials and efficiently produce tritium, which is used for numerous applications ranging from medical imaging to watch dials; and a new technique to study various phenomena in cosmology, including the workings of neutron stars and black holes.

The desktop experiment is safe because, although the reactions generate extremely high pressures and temperatures, those extreme conditions exist only in small regions of the liquid in the container – within the collapsing bubbles, Xu said.

Purdue researchers plan to release additional data from related experiments in October during the Nuclear Reactor Thermal Hydraulics conference in Avignon, France.

The 2004 paper was written by Taleyarkhan while a distinguished scientist at Oak Ridge National Laboratory, postdoctoral fellow J.S Cho at Oak Ridge Associated Universities; Colin West, a retired scientist from Oak Ridge; Richard T. Lahey Jr., the Edward E. Hood Professor of Engineering at Rensselaer Polytechnic Institute (RPI); R.C. Nigmatulin, a visiting scholar at RPI and president of the Russian Academy of Sciences’ Bashkortonstan branch; and Robert C. Block, active professor emeritus in the School of Engineering at RPI and director of RPI’s Gaerttner Linear Accelerator Laboratory.

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Physics and Astronomy:

nachricht Space radiation won't stop NASA's human exploration
18.10.2017 | NASA/Johnson Space Center

nachricht Study shows how water could have flowed on 'cold and icy' ancient Mars
18.10.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>