Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Letting the spin loose

13.07.2005


A team of scientists at the Weizmann Institute of Science has recently demonstrated conclusively that, in very specific circumstances, spin can become separated from charge and progress independently down a wire



Two properties of an electron - its spin and its charge - are generally thought to be inseparable, intrinsic characteristics, no more given to sudden changes or going off on their own than say, the fur on a cat or the paint on a bicycle. But a team of scientists at the Weizmann Institute of Science has recently demonstrated conclusively that, in very specific circumstances, spin can become separated from charge and progress independently down a wire. Their findings appeared in a recent issue of Science.

Spin-charge separation was first predicted in the sixties. The idea was based on a theory that electrons with a range of movement limited to one dimension alone would behave differently from those moving in two or three dimensions. This is because when electrons are lined up head to tail, the influence of the repulsive forces between them becomes overridingly significant. But demonstrating the phenomenon had to wait until technology caught up to the theory.


Prof. Amir Yacoby of the Institute’s Condensed Matter Physics Department and research students Dr. Ophir Auslaender and Hadar Steinberg set up an experiment with quantum wires - so thin that electrons must go single file down their length, limiting flow to a single dimension and direction. "Up to a certain point, one can think of these electrons as cars on a narrow, one lane road: there’s no passing, and the slowest car sets the speed for the rest. A block in the road will bring all traffic to a halt. But here the analogy ends. If you increase car density on a road, traffic invariably slows down, while electrons speed along merrily in high-density flow and slow down when the density decreases. It is in these slow-moving, low density electron flows that things become interesting."

The separation the team achieved between spin and charge rests on the fact that the spins of electrons in these low density, single dimension flows generally follow a preferred arrangement: alternating between the two possible directions of electron spin - up and down. In the experiment, single electrons here and there could jump from wire to wire, allowing the scientists to jumble traffic a bit. So when an electron in the middle having, say, a down spin stepped out of the line, the next electron moved up to fill in, creating a situation with two neighboring ups. This non-ideal state of affairs caused one of them to flip its spin to down, which then caused the next electron, also with a down spin, to flip its spin to up, and so on. Thus the spin traveled down the wire independently of the charge, which stayed tied to the electrons.

Alex Smith | EurekAlert!
Further information:
http://www.jgordonassociates.com

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>