Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Letting the spin loose

13.07.2005


A team of scientists at the Weizmann Institute of Science has recently demonstrated conclusively that, in very specific circumstances, spin can become separated from charge and progress independently down a wire



Two properties of an electron - its spin and its charge - are generally thought to be inseparable, intrinsic characteristics, no more given to sudden changes or going off on their own than say, the fur on a cat or the paint on a bicycle. But a team of scientists at the Weizmann Institute of Science has recently demonstrated conclusively that, in very specific circumstances, spin can become separated from charge and progress independently down a wire. Their findings appeared in a recent issue of Science.

Spin-charge separation was first predicted in the sixties. The idea was based on a theory that electrons with a range of movement limited to one dimension alone would behave differently from those moving in two or three dimensions. This is because when electrons are lined up head to tail, the influence of the repulsive forces between them becomes overridingly significant. But demonstrating the phenomenon had to wait until technology caught up to the theory.


Prof. Amir Yacoby of the Institute’s Condensed Matter Physics Department and research students Dr. Ophir Auslaender and Hadar Steinberg set up an experiment with quantum wires - so thin that electrons must go single file down their length, limiting flow to a single dimension and direction. "Up to a certain point, one can think of these electrons as cars on a narrow, one lane road: there’s no passing, and the slowest car sets the speed for the rest. A block in the road will bring all traffic to a halt. But here the analogy ends. If you increase car density on a road, traffic invariably slows down, while electrons speed along merrily in high-density flow and slow down when the density decreases. It is in these slow-moving, low density electron flows that things become interesting."

The separation the team achieved between spin and charge rests on the fact that the spins of electrons in these low density, single dimension flows generally follow a preferred arrangement: alternating between the two possible directions of electron spin - up and down. In the experiment, single electrons here and there could jump from wire to wire, allowing the scientists to jumble traffic a bit. So when an electron in the middle having, say, a down spin stepped out of the line, the next electron moved up to fill in, creating a situation with two neighboring ups. This non-ideal state of affairs caused one of them to flip its spin to down, which then caused the next electron, also with a down spin, to flip its spin to up, and so on. Thus the spin traveled down the wire independently of the charge, which stayed tied to the electrons.

Alex Smith | EurekAlert!
Further information:
http://www.jgordonassociates.com

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>