Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Letting the spin loose

13.07.2005


A team of scientists at the Weizmann Institute of Science has recently demonstrated conclusively that, in very specific circumstances, spin can become separated from charge and progress independently down a wire



Two properties of an electron - its spin and its charge - are generally thought to be inseparable, intrinsic characteristics, no more given to sudden changes or going off on their own than say, the fur on a cat or the paint on a bicycle. But a team of scientists at the Weizmann Institute of Science has recently demonstrated conclusively that, in very specific circumstances, spin can become separated from charge and progress independently down a wire. Their findings appeared in a recent issue of Science.

Spin-charge separation was first predicted in the sixties. The idea was based on a theory that electrons with a range of movement limited to one dimension alone would behave differently from those moving in two or three dimensions. This is because when electrons are lined up head to tail, the influence of the repulsive forces between them becomes overridingly significant. But demonstrating the phenomenon had to wait until technology caught up to the theory.


Prof. Amir Yacoby of the Institute’s Condensed Matter Physics Department and research students Dr. Ophir Auslaender and Hadar Steinberg set up an experiment with quantum wires - so thin that electrons must go single file down their length, limiting flow to a single dimension and direction. "Up to a certain point, one can think of these electrons as cars on a narrow, one lane road: there’s no passing, and the slowest car sets the speed for the rest. A block in the road will bring all traffic to a halt. But here the analogy ends. If you increase car density on a road, traffic invariably slows down, while electrons speed along merrily in high-density flow and slow down when the density decreases. It is in these slow-moving, low density electron flows that things become interesting."

The separation the team achieved between spin and charge rests on the fact that the spins of electrons in these low density, single dimension flows generally follow a preferred arrangement: alternating between the two possible directions of electron spin - up and down. In the experiment, single electrons here and there could jump from wire to wire, allowing the scientists to jumble traffic a bit. So when an electron in the middle having, say, a down spin stepped out of the line, the next electron moved up to fill in, creating a situation with two neighboring ups. This non-ideal state of affairs caused one of them to flip its spin to down, which then caused the next electron, also with a down spin, to flip its spin to up, and so on. Thus the spin traveled down the wire independently of the charge, which stayed tied to the electrons.

Alex Smith | EurekAlert!
Further information:
http://www.jgordonassociates.com

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>