Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Spongy-looking hyperion tumbles into view


Two new Cassini views of Saturn’s tumbling moon Hyperion offer the best looks yet at one of the icy, irregularly-shaped moons that orbit the giant, ringed planet.

The image products released today include a movie sequence and a 3D view, and are available at, and

The views were acquired between June 9 and June 11, 2005, during Cassini’s first brush with Hyperion.

Hyperion is decidedly non-spherical and its unusual shape is easy to see in the movie, which was acquired over the course of two and a half days. Jagged outlines visible on the moon’s surface are indicators of large impacts that have chipped away at its shape like a sculptor.

Preliminary estimates of its density show that Hyperion is only about 60 percent as dense as solid water ice, indicating that much of its interior (40 percent or more) must be empty space. This makes the moon more like an icy rubble pile than a solid body.

In both the movie and the 3D image, craters are visible on the moon’s surface down to the limit of resolution, about 1 kilometer (0.6 mile) per pixel. The fresh appearance of most of these craters, combined with their high spatial density, makes Hyperion look something like a sponge.

The moon’s spongy-looking exterior is an interesting coincidence, as much of Hyperion’s interior appears to consist of voids. Hyperion is close to the size limit where, like a child compacting a snowball, internal pressure due to the moon’s own gravity will begin to crush weak materials like ice, closing pore spaces and eventually creating a more nearly spherical shape.

The images used to create these views were obtained with Cassini’s narrow-angle camera at distances ranging from approximately 815,000 to 168,000 kilometers (506,000 to 104,000 miles) from Hyperion. Cassini will fly within 510 kilometers (317 miles) of Hyperion on Sept. 26, 2005.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini-Huygens mission for NASA’s Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging team is based at the Space Science Institute, Boulder, Colo.

Preston Dyches | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>