Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU physicists find way to create three-dimensional quasicrystals

12.07.2005


New York University physicists have applied a ground-breaking nanotechnology method to create three-dimensional quasicrystals, highly ordered structures that, unlike conventional crystals, never repeat themselves.



Metallic quasicrystals created from exotic alloys have shown promise for storing hydrogen more efficiently than crystalline hosts. Their non-repeating structure has the potential to dramatically strengthen industrial and commercial products. The NYU quasicrystals, by contrast, are made of glass and plastic and have potentially revolutionary optical properties.

The research, authored by NYU physicists David Grier and Yael Roichman, appears in the July 11 issue of Optics Express, a journal of the Optical Society of America.


Quasicrystals, discovered in the mid-1980s, are different from crystals, whose periodic structures resemble the patterns of tiles on a bathroom floor. By contrast, quasicrystals do not have this property, called translational symmetry, but, like crystals, can be rotated into registry with themselves, a property called rotational symmetry.

Quasicrystals’ rotational symmetry gives them many of the properties of conventional crystals. These same symmetries are responsible for conventional semiconducting crystals’ ability to act as switches for electrons. However, because quasicrystals do not possess the translational symmetry of conventional crystals, they have the freedom to take a broader range of forms, opening up the potential to serve a range of functions.

The quasicrystals reported by Roichman and Grier are created from tiny glass spheres, each comparable in size to the wavelength of light, stacked precisely in mathematically defined configurations. Like the crystalline structures responsible for the irridescence of gem opals and the colors of butterfly wings, these quasicrystalline sphere packings diffract different wavelengths of light into different directions, creating a rainbow-like display. For particular structures, and particular wavelengths, however, the quasicrystals offer no path at all for light. The resulting gaps in the rainbow, known as photonic bandgaps, can be manipulated to create switches for light. For instance, when translated into structures with features comparable to the wavelength of light, these properties of quasicrystals should enable them to manipulate light in much the same way that semiconductors manipulate electrons.

This has already been achieved for two-dimensional structures by previous researchers. However, prior to the work of Roichman and Grier, scientists had not been able to branch out into three-dimensional quasicrystals--thereby reaping the full benefits of their unique properties--because of the inability to create this class of quasicrystals with the proper materials at the right size scale.

Previous attempts at addressing this challenge included the use of lithographic techniques. In a departure from this approach, Roichman, Grier, and their colleagues used a method developed by Grier’s group called holographic optical trapping. This allows scientists to manipulate objects as small as a few nanometers across and as large as several hundred micrometers. These "optical tweezers" allow scientists to organize microscopic objects into interesting and useful configurations, to dissect them, to assemble them into devices, or to chemically transform them, all with unprecedented precision. Using this method on quasicrystals, Roichman and Grier were able to organize hundreds of free-floating microspheres into densely packed structures defined by the mathematical definition of quasicrystalline order.

Grier is part of an NYU team of internationally recognized physicists in the field of soft condensed matter physics, a new inter-disciplinary field that explores how materials are organized at microscopic levels, and which studies the physical properties of malleable materials such as colloids and polymers. With Grier, Paul Chaikin, formerly of Princeton University, and David Pine, formerly of the University of California, Santa Barbara, form the core of NYU’s Center for Soft Matter Research. Yael Roichman is a postdoctoral researcher in Grier’s group.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Physics and Astronomy:

nachricht New quantum phenomena in graphene superlattices
19.09.2017 | Graphene Flagship

nachricht Solar wind impacts on giant 'space hurricanes' may affect satellite safety
19.09.2017 | Embry-Riddle Aeronautical University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>