Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU physicists find way to create three-dimensional quasicrystals

12.07.2005


New York University physicists have applied a ground-breaking nanotechnology method to create three-dimensional quasicrystals, highly ordered structures that, unlike conventional crystals, never repeat themselves.



Metallic quasicrystals created from exotic alloys have shown promise for storing hydrogen more efficiently than crystalline hosts. Their non-repeating structure has the potential to dramatically strengthen industrial and commercial products. The NYU quasicrystals, by contrast, are made of glass and plastic and have potentially revolutionary optical properties.

The research, authored by NYU physicists David Grier and Yael Roichman, appears in the July 11 issue of Optics Express, a journal of the Optical Society of America.


Quasicrystals, discovered in the mid-1980s, are different from crystals, whose periodic structures resemble the patterns of tiles on a bathroom floor. By contrast, quasicrystals do not have this property, called translational symmetry, but, like crystals, can be rotated into registry with themselves, a property called rotational symmetry.

Quasicrystals’ rotational symmetry gives them many of the properties of conventional crystals. These same symmetries are responsible for conventional semiconducting crystals’ ability to act as switches for electrons. However, because quasicrystals do not possess the translational symmetry of conventional crystals, they have the freedom to take a broader range of forms, opening up the potential to serve a range of functions.

The quasicrystals reported by Roichman and Grier are created from tiny glass spheres, each comparable in size to the wavelength of light, stacked precisely in mathematically defined configurations. Like the crystalline structures responsible for the irridescence of gem opals and the colors of butterfly wings, these quasicrystalline sphere packings diffract different wavelengths of light into different directions, creating a rainbow-like display. For particular structures, and particular wavelengths, however, the quasicrystals offer no path at all for light. The resulting gaps in the rainbow, known as photonic bandgaps, can be manipulated to create switches for light. For instance, when translated into structures with features comparable to the wavelength of light, these properties of quasicrystals should enable them to manipulate light in much the same way that semiconductors manipulate electrons.

This has already been achieved for two-dimensional structures by previous researchers. However, prior to the work of Roichman and Grier, scientists had not been able to branch out into three-dimensional quasicrystals--thereby reaping the full benefits of their unique properties--because of the inability to create this class of quasicrystals with the proper materials at the right size scale.

Previous attempts at addressing this challenge included the use of lithographic techniques. In a departure from this approach, Roichman, Grier, and their colleagues used a method developed by Grier’s group called holographic optical trapping. This allows scientists to manipulate objects as small as a few nanometers across and as large as several hundred micrometers. These "optical tweezers" allow scientists to organize microscopic objects into interesting and useful configurations, to dissect them, to assemble them into devices, or to chemically transform them, all with unprecedented precision. Using this method on quasicrystals, Roichman and Grier were able to organize hundreds of free-floating microspheres into densely packed structures defined by the mathematical definition of quasicrystalline order.

Grier is part of an NYU team of internationally recognized physicists in the field of soft condensed matter physics, a new inter-disciplinary field that explores how materials are organized at microscopic levels, and which studies the physical properties of malleable materials such as colloids and polymers. With Grier, Paul Chaikin, formerly of Princeton University, and David Pine, formerly of the University of California, Santa Barbara, form the core of NYU’s Center for Soft Matter Research. Yael Roichman is a postdoctoral researcher in Grier’s group.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Physics and Astronomy:

nachricht Writing and deleting magnets with lasers
19.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Ultrafast electron oscillation and dephasing monitored by attosecond light source
19.04.2018 | Yokohama National University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>