Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NYU physicists find way to create three-dimensional quasicrystals


New York University physicists have applied a ground-breaking nanotechnology method to create three-dimensional quasicrystals, highly ordered structures that, unlike conventional crystals, never repeat themselves.

Metallic quasicrystals created from exotic alloys have shown promise for storing hydrogen more efficiently than crystalline hosts. Their non-repeating structure has the potential to dramatically strengthen industrial and commercial products. The NYU quasicrystals, by contrast, are made of glass and plastic and have potentially revolutionary optical properties.

The research, authored by NYU physicists David Grier and Yael Roichman, appears in the July 11 issue of Optics Express, a journal of the Optical Society of America.

Quasicrystals, discovered in the mid-1980s, are different from crystals, whose periodic structures resemble the patterns of tiles on a bathroom floor. By contrast, quasicrystals do not have this property, called translational symmetry, but, like crystals, can be rotated into registry with themselves, a property called rotational symmetry.

Quasicrystals’ rotational symmetry gives them many of the properties of conventional crystals. These same symmetries are responsible for conventional semiconducting crystals’ ability to act as switches for electrons. However, because quasicrystals do not possess the translational symmetry of conventional crystals, they have the freedom to take a broader range of forms, opening up the potential to serve a range of functions.

The quasicrystals reported by Roichman and Grier are created from tiny glass spheres, each comparable in size to the wavelength of light, stacked precisely in mathematically defined configurations. Like the crystalline structures responsible for the irridescence of gem opals and the colors of butterfly wings, these quasicrystalline sphere packings diffract different wavelengths of light into different directions, creating a rainbow-like display. For particular structures, and particular wavelengths, however, the quasicrystals offer no path at all for light. The resulting gaps in the rainbow, known as photonic bandgaps, can be manipulated to create switches for light. For instance, when translated into structures with features comparable to the wavelength of light, these properties of quasicrystals should enable them to manipulate light in much the same way that semiconductors manipulate electrons.

This has already been achieved for two-dimensional structures by previous researchers. However, prior to the work of Roichman and Grier, scientists had not been able to branch out into three-dimensional quasicrystals--thereby reaping the full benefits of their unique properties--because of the inability to create this class of quasicrystals with the proper materials at the right size scale.

Previous attempts at addressing this challenge included the use of lithographic techniques. In a departure from this approach, Roichman, Grier, and their colleagues used a method developed by Grier’s group called holographic optical trapping. This allows scientists to manipulate objects as small as a few nanometers across and as large as several hundred micrometers. These "optical tweezers" allow scientists to organize microscopic objects into interesting and useful configurations, to dissect them, to assemble them into devices, or to chemically transform them, all with unprecedented precision. Using this method on quasicrystals, Roichman and Grier were able to organize hundreds of free-floating microspheres into densely packed structures defined by the mathematical definition of quasicrystalline order.

Grier is part of an NYU team of internationally recognized physicists in the field of soft condensed matter physics, a new inter-disciplinary field that explores how materials are organized at microscopic levels, and which studies the physical properties of malleable materials such as colloids and polymers. With Grier, Paul Chaikin, formerly of Princeton University, and David Pine, formerly of the University of California, Santa Barbara, form the core of NYU’s Center for Soft Matter Research. Yael Roichman is a postdoctoral researcher in Grier’s group.

James Devitt | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>