Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bottom quarks reveal something of their identity


Dutch researcher Bram Wijngaarden investigated how bottom quarks are created during collisions between protons and antiprotons. Wijngaarden’s measurements have contributed to a better understanding of the theory, and can be used to explain why the production of these quarks during such collisions is higher than had originally been expected.

Bram Wijngaarden investigated the creation of bottom quarks using the D zero experiment of the particle accelerator at the Fermi lab in Chicago, United States. In this Tevatron particle accelerator, protons and antiprotons collide with each other. Bottom quarks are created as a result of the strong nuclear force that arises during these collisions. In the 1990s measurements with the Tevatron particle accelerator and with the Hera particle accelerator in Hamburg revealed that the production of bottom quarks was higher than had been theoretically predicted. Since then theoretical physicists have done a lot of work to explain the difference. Wijngaarden’s measurements must reveal whether the theory provides a good description of the reality.

Bottom quarks

Bottom quarks are created during high-energy collisions between particles. The bottom quark is one of six quarks. Together with the top quark it is one of the heaviest quarks. These quarks are only found under extreme circumstances, such as during collisions between particles. After the collision the bottom quarks decay into other particles. Measuring devices detect the electrical signals left behind by the particles. Signals from the decay products of the bottom quarks can be distinguished from the other particles released because bottom quarks are heavier and on average breakdown slightly less quickly.

By measuring the angle between two bottom quarks from the same collision, Wijngaarden could study the strong nuclear force directly. This angle was measured as the angle between the avalanches from the decay products of the bottom quarks. In the first-order approach, the theory predicts that the two bottom quarks always move apart from each other at an angle of 180 degrees. Wijngaarden showed that in a number of cases the angle is much smaller. The second-order approach predicts that the angle is much smaller in a number of cases but the average size of the angle measured by the researcher differed from the result obtained using this approach. The strong nuclear force can be tested more accurately with new measurements made with the help of methods developed by Wijngaarden.

Bram Wijngaarden’s research was funded by NWO.

Dr Bram Wijngaarden | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Innovative technique for shaping light could solve bandwidth crunch
20.10.2016 | The Optical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>