Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bottom quarks reveal something of their identity

07.07.2005


Dutch researcher Bram Wijngaarden investigated how bottom quarks are created during collisions between protons and antiprotons. Wijngaarden’s measurements have contributed to a better understanding of the theory, and can be used to explain why the production of these quarks during such collisions is higher than had originally been expected.



Bram Wijngaarden investigated the creation of bottom quarks using the D zero experiment of the particle accelerator at the Fermi lab in Chicago, United States. In this Tevatron particle accelerator, protons and antiprotons collide with each other. Bottom quarks are created as a result of the strong nuclear force that arises during these collisions. In the 1990s measurements with the Tevatron particle accelerator and with the Hera particle accelerator in Hamburg revealed that the production of bottom quarks was higher than had been theoretically predicted. Since then theoretical physicists have done a lot of work to explain the difference. Wijngaarden’s measurements must reveal whether the theory provides a good description of the reality.

Bottom quarks


Bottom quarks are created during high-energy collisions between particles. The bottom quark is one of six quarks. Together with the top quark it is one of the heaviest quarks. These quarks are only found under extreme circumstances, such as during collisions between particles. After the collision the bottom quarks decay into other particles. Measuring devices detect the electrical signals left behind by the particles. Signals from the decay products of the bottom quarks can be distinguished from the other particles released because bottom quarks are heavier and on average breakdown slightly less quickly.

By measuring the angle between two bottom quarks from the same collision, Wijngaarden could study the strong nuclear force directly. This angle was measured as the angle between the avalanches from the decay products of the bottom quarks. In the first-order approach, the theory predicts that the two bottom quarks always move apart from each other at an angle of 180 degrees. Wijngaarden showed that in a number of cases the angle is much smaller. The second-order approach predicts that the angle is much smaller in a number of cases but the average size of the angle measured by the researcher differed from the result obtained using this approach. The strong nuclear force can be tested more accurately with new measurements made with the help of methods developed by Wijngaarden.

Bram Wijngaarden’s research was funded by NWO.

Dr Bram Wijngaarden | EurekAlert!
Further information:
http://www.hef.ru.nl

More articles from Physics and Astronomy:

nachricht MEMS chips get metatlenses
21.02.2018 | American Institute of Physics

nachricht International team publishes roadmap to enhance radioresistance for space colonization
21.02.2018 | Biogerontology Research Foundation

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>