Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new particle discovered by Babar experiment: it can help to reveal the secrets of the strong force

06.07.2005


Its name is Y(4260) and it is not a new humanoid of Stars Wars, but a particle identified for the first time by BaBar experiment: an international collaboration - formed by the large participation of the Italian physicists of the National Institute for Nuclear Physics (Infn) - that has its seat in Stanford (California). Y(4260) represents an interesting element with respect of particles’ field and it will provide very useful signs about character of the strong force, that is the force that holds together the different particles inside atomic nuclei. The discovery, announced during the international symposium “Lepton Photon” just finished in Uppsala in Sweden, has been presented today during a meeting of the Supervising Committee of Babar experiment that this year has taken place in Rome, by the seat of Infn Headquarter.



“At first sight Y(4260) seems to be what we call a charmonic state, that is to say a particle made up of the combination of a charm quark and of its equivalent antiparticle: an anticharm quark”, explains Marcello Giorgi, Infn researcher, professor of Physics at Pisa University and involved in Babar experiment since a long time.

Physicists have known since some time that for each particle, an antiparticle exists, nearly identical in all aspects, except for some properties that are opposite. The antiparticle of the electron is for instance the positron, named also antielectron, provided with positive electric charge, rather than negative. During the 50’s it was although discovered that particles can be made up also of the combination of a fundamental particle and its corresponding antiparticle. “The first case was the positronium one, made up of the combination of an electron and a positron. The first charmonium, that is to say a particle made up of a charm quark and anti-charm, was instead discovered at the same time in Brookhaven and at Slac, both in the USA, by Samuel Ting and Burton Richter, awarded with the Nobel in 1976: its existence it was soon afterwards confirmed thanks to the analysis of the data produced in Italy by the National Laboratories of Frascati of Infn. As time passed, it was realized that charmoni are a real family of similar particles, but with a different mass. Nobody had been able to observe Y(4260) up to now, not only because there is a little possibility to produce it in the accelerators used today by physicists, but also because it is extremely unstable”, explains Mauro Morandin, Infn researcher and national spokesman of BaBar experiment.


“Compound particles, made up of the combination of a fundamental particle and its corresponding antiparticle, are of great interest for physics. Quarks and corresponding anti-quarks can be held together because of several mechanisms: in order to understand the so-called strong force [the strong force is one of the four fundamental forces of nature, the other are the electromagnetic force, the weak force, responsible for fusion mechanisms occurring inside stars and the gravitational force] it is necessary to grasp these mechanisms deeply. The strong force holds together quarks of different type that form neutrons and protons, and holds also neutrons and protons together inside atomic nuclei. It is therefore a very important force, because without it would be impossible to conceive the existence of matter that forms all we know. All signs let us suppose that Y(4260) will give very interesting indications about it, whether it is really a charmonium, or, all the more so, something more exotic”, concludes Marcello Giorgi.

The most surprising aspect of Y(4260) is although the fact that some properties of its nature seem to be unusual for a charmonium. This makes think that the particle could be something much more complex: a kind of molecule made up of particles named D mesons, or a state made up of four quarks. Since 2003 BaBar has discovered states that can have this structure never observed before, such as the DsJ (2317), the DsJ (2458), and the X(3872), but there are no definitive evidences for this interpretation.

Verifying these possibilities is the challenge for the next future.

Marcello Giorgi | alfa
Further information:
http://www.infn.it

More articles from Physics and Astronomy:

nachricht Turning entanglement upside down
22.05.2018 | Universität Innsbruck

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>