Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Swift Satellite Offers a Different View of the Great Comet Collision

06.07.2005


Scientists using the Swift satellite witnessed a tale of fire and ice today, as NASA’s Deep Impact probe slammed into the frozen comet Tempel 1. The collision briefly lit the dim comet’s surface and exposed, for the first time, a section of ancient and virgin material from the comet’s interior.



Swift is providing the only simultaneous multi-wavelength observation of this rare event, with a suite of instruments capable of detecting optical light, ultraviolet, X-rays and gamma rays. Different wavelengths reveal different secrets about the comet.

So far, after a set of eight observations each lasting about 50 minutes, Swift scientists have seen a quick and dramatic rise in ultraviolet light, evidence that the Deep Impact probe struck a hard surface, as opposed to a softer, snowy surface. A movie of the ultraviolet observations is available at this web site (left) and at the Swift Mission Operations Center .


More observations and analysis are expected in the coming days from teams at NASA and Penn State and in Italy and the United Kingdom.

"We have now observed this comet before, during, and after the collision," said Dr. Sally Hunsberger of the Swift Mission Operation Center at Penn State. "The comparison of observations at different times -- that is, what was seen, when and at what wavelength -- should prove to be quite interesting."

Most of the debris observed in ultraviolet light likely came from once-icy surface material heated to 2,000 degrees by the impact. X-rays have not been detected yet but analysis will continue throughout the week. X-rays are expected to be emitted from newly liberated sub-surface material lifted into the comet’s coma, which is then illuminated by the high-energy solar wind from the Sun. It takes about a day, however, for the material to reach the coma.

"Some called it fireworks today, but it really was more like ’iceworks,’" said Prof. Keith Mason, Director of Mullard Space Science Laboratory at University College London, who organized the Swift observations. "Much of the comet is ice. It’s the other stuff deep inside we’re most interested in -- pristine material from the formation of the solar system locked safely below the comet’s frozen surface. We don’t know exactly what we kicked up yet."

Swift’s "day job" is detecting distant, natural explosions called gamma-ray bursts and creating a map of X-ray sources in the universe, far more energetic "fireworks." Indeed, since beginning this Deep Impact campaign on July 1 -- in addition to seeing comet Tempel 1 -- Swift has seen a gamma-ray burst and a supernova and has discovered a black hole in the Milky Way galaxy. The satellite’s speed and agility, however, provides an important complement to the dozens of other world-class observatories in space and on Earth observing the Deep Impact experiment. Swift will continue to monitor the comet this week.

Comets are small astronomical objects usually in highly elliptical orbits around the sun. They are made primarily of frozen water, methane and carbon dioxide with a small amount of minerals. They likely originate in the Oort Cloud in the outskirts of the solar system. Comet Tempel 1 is about the size of Washington, D.C. Some scientists say that comets crashing into Earth billions of years ago brought water to our planet.

A comet becomes visible when radiation from the Sun evaporates its outer layers, creating a coma, the thin atmosphere. Solar wind impacts the coma to form the comet’s tail of dust and gas, which always points away from the Sun. Comets are best visible when they enter the inner solar system, closer to the Sun.

"The Deep Impact collision was the most watched astronomical event of the year," said Dr. Neil Gehrels, Swift Principal Investigator at NASA Goddard Space Flight Center in Greenbelt, Md. "All the ’big-guns’ observatories tracked it. In the next few days, as material continues to fly off the comet from newly created vents, we will see whether Swift can offer new insight into comets by virtue of the high-energy light we are seeing."

Prof. Mason and Prof. Alan Wells of the University of Leicester in England are at the Swift Mission Operation Center to help with the observation.

The Deep Impact mission is managed by NASA’s Jet Propulsion Laboratory, Pasadena, California. Swift is a medium-class NASA explorer mission in partnership with the Italian Space Agency and the Particle Physics and Astronomy Research Council in the United Kingdom, and is managed by NASA Goddard. Penn State controls science and flight operations from the Mission Operations Center in University Park, Pennsylvania. The spacecraft was built in collaboration with national laboratories, universities and international partners, including Penn State University; Los Alamos National Laboratory, New Mexico; Sonoma State University, Rohnert Park, Calif.; Mullard Space Science Laboratory in Dorking, Surrey, England; the University of Leicester, England; Brera Observatory in Milan; and ASI Science Data Center in Frascati, Italy.

IMAGES AND VIDEOS:
High-resolution images and videos are available on the web at
www.science.psu.edu/alert/Swift-Deep-Impact.htm

CONTACTS:
Margaret Chester: chester@astro.psu.edu, 814-8685-7746
Sally Hunsberger, sdh@astro.psu.edu, 814-865-7748
Neil Gehrels: gehrels@gsfc.nasa.gov, 301-286-6546
Lynn Cominsky: llynnc@universe.sonoma.edu, 707-664-2655
Barbara K. Kennedy (PIO), science@psu.edu, 814-863-4682

Barbara K. Kennedy | EurekAlert!
Further information:
http://swift.gsfc.nasa.gov
http://www.science.psu.edu/alert/SwiftPressReleases.html
http://swift.sonoma.edu

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>