Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Swift Satellite Offers a Different View of the Great Comet Collision

06.07.2005


Scientists using the Swift satellite witnessed a tale of fire and ice today, as NASA’s Deep Impact probe slammed into the frozen comet Tempel 1. The collision briefly lit the dim comet’s surface and exposed, for the first time, a section of ancient and virgin material from the comet’s interior.



Swift is providing the only simultaneous multi-wavelength observation of this rare event, with a suite of instruments capable of detecting optical light, ultraviolet, X-rays and gamma rays. Different wavelengths reveal different secrets about the comet.

So far, after a set of eight observations each lasting about 50 minutes, Swift scientists have seen a quick and dramatic rise in ultraviolet light, evidence that the Deep Impact probe struck a hard surface, as opposed to a softer, snowy surface. A movie of the ultraviolet observations is available at this web site (left) and at the Swift Mission Operations Center .


More observations and analysis are expected in the coming days from teams at NASA and Penn State and in Italy and the United Kingdom.

"We have now observed this comet before, during, and after the collision," said Dr. Sally Hunsberger of the Swift Mission Operation Center at Penn State. "The comparison of observations at different times -- that is, what was seen, when and at what wavelength -- should prove to be quite interesting."

Most of the debris observed in ultraviolet light likely came from once-icy surface material heated to 2,000 degrees by the impact. X-rays have not been detected yet but analysis will continue throughout the week. X-rays are expected to be emitted from newly liberated sub-surface material lifted into the comet’s coma, which is then illuminated by the high-energy solar wind from the Sun. It takes about a day, however, for the material to reach the coma.

"Some called it fireworks today, but it really was more like ’iceworks,’" said Prof. Keith Mason, Director of Mullard Space Science Laboratory at University College London, who organized the Swift observations. "Much of the comet is ice. It’s the other stuff deep inside we’re most interested in -- pristine material from the formation of the solar system locked safely below the comet’s frozen surface. We don’t know exactly what we kicked up yet."

Swift’s "day job" is detecting distant, natural explosions called gamma-ray bursts and creating a map of X-ray sources in the universe, far more energetic "fireworks." Indeed, since beginning this Deep Impact campaign on July 1 -- in addition to seeing comet Tempel 1 -- Swift has seen a gamma-ray burst and a supernova and has discovered a black hole in the Milky Way galaxy. The satellite’s speed and agility, however, provides an important complement to the dozens of other world-class observatories in space and on Earth observing the Deep Impact experiment. Swift will continue to monitor the comet this week.

Comets are small astronomical objects usually in highly elliptical orbits around the sun. They are made primarily of frozen water, methane and carbon dioxide with a small amount of minerals. They likely originate in the Oort Cloud in the outskirts of the solar system. Comet Tempel 1 is about the size of Washington, D.C. Some scientists say that comets crashing into Earth billions of years ago brought water to our planet.

A comet becomes visible when radiation from the Sun evaporates its outer layers, creating a coma, the thin atmosphere. Solar wind impacts the coma to form the comet’s tail of dust and gas, which always points away from the Sun. Comets are best visible when they enter the inner solar system, closer to the Sun.

"The Deep Impact collision was the most watched astronomical event of the year," said Dr. Neil Gehrels, Swift Principal Investigator at NASA Goddard Space Flight Center in Greenbelt, Md. "All the ’big-guns’ observatories tracked it. In the next few days, as material continues to fly off the comet from newly created vents, we will see whether Swift can offer new insight into comets by virtue of the high-energy light we are seeing."

Prof. Mason and Prof. Alan Wells of the University of Leicester in England are at the Swift Mission Operation Center to help with the observation.

The Deep Impact mission is managed by NASA’s Jet Propulsion Laboratory, Pasadena, California. Swift is a medium-class NASA explorer mission in partnership with the Italian Space Agency and the Particle Physics and Astronomy Research Council in the United Kingdom, and is managed by NASA Goddard. Penn State controls science and flight operations from the Mission Operations Center in University Park, Pennsylvania. The spacecraft was built in collaboration with national laboratories, universities and international partners, including Penn State University; Los Alamos National Laboratory, New Mexico; Sonoma State University, Rohnert Park, Calif.; Mullard Space Science Laboratory in Dorking, Surrey, England; the University of Leicester, England; Brera Observatory in Milan; and ASI Science Data Center in Frascati, Italy.

IMAGES AND VIDEOS:
High-resolution images and videos are available on the web at
www.science.psu.edu/alert/Swift-Deep-Impact.htm

CONTACTS:
Margaret Chester: chester@astro.psu.edu, 814-8685-7746
Sally Hunsberger, sdh@astro.psu.edu, 814-865-7748
Neil Gehrels: gehrels@gsfc.nasa.gov, 301-286-6546
Lynn Cominsky: llynnc@universe.sonoma.edu, 707-664-2655
Barbara K. Kennedy (PIO), science@psu.edu, 814-863-4682

Barbara K. Kennedy | EurekAlert!
Further information:
http://swift.gsfc.nasa.gov
http://www.science.psu.edu/alert/SwiftPressReleases.html
http://swift.sonoma.edu

More articles from Physics and Astronomy:

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

nachricht Supermassive black hole model predicts characteristic light signals at cusp of collision
15.02.2018 | Rochester Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>