Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Einstein, ‘spooky action’ and the future of computing

05.07.2005


A groundbreaking group of theoretical and experimental physicists is coming together to experiment with a phenomenon that disturbed Einstein and which could one day make super-fast quantum computers a possibility.



Centenary professor of quantum information science Vlatko Vedral (pictured) is an expert in the theoretical study of entanglement – a phenomenon Einstein called ‘spooky action at a distance’. Two ‘entangled’ particles are connected because the fate of one depends on the other. A change in one particle is communicated to the other even faster than the speed of light, breaking all traditional rules of physics.

Quantum entanglement forms the basis for emerging technologies including quantum computers, which have a far greater capacity than today’s machines. Computers of the future fuelled by quantum bits could perform massive calculations – such as the factorisation of huge numbers – or complicated database searches.


“If you have one million names in a database then it can take a computer up to one million searches to find a particular one,” explains Professor Vedral. “A quantum computer could do this in the square root time; so in one thousand steps rather than a million.”

Professor Vedral’s group of theoretical quantum information will work with an experimental group, creating the UK’s largest centre for quantum work. “The UK – and Europe generally – is very strong on the theoretical side but often lacks the funding for experimental support. We are now in a unique position to be equally good at both,” said Professor Vedral.

The new group will test the fundamental ideas behind quantum mechanics – in particular how large an entangled system could be – and push them to their limits in a new £1.35m lab. “Bringing together theoretical and experimental groups means we can immediately implement our ideas and will allow us to take more risks,” said Professor Vedral.

Claire Jones | alfa
Further information:
http://reporter.leeds.ac.uk/509/s4.htm

More articles from Physics and Astronomy:

nachricht Innovative LED High Power Light Source for UV
22.06.2017 | Omicron - Laserage Laserprodukte GmbH

nachricht Spin liquids − back to the roots
22.06.2017 | Universität Augsburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>