Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Einstein, ‘spooky action’ and the future of computing

05.07.2005


A groundbreaking group of theoretical and experimental physicists is coming together to experiment with a phenomenon that disturbed Einstein and which could one day make super-fast quantum computers a possibility.



Centenary professor of quantum information science Vlatko Vedral (pictured) is an expert in the theoretical study of entanglement – a phenomenon Einstein called ‘spooky action at a distance’. Two ‘entangled’ particles are connected because the fate of one depends on the other. A change in one particle is communicated to the other even faster than the speed of light, breaking all traditional rules of physics.

Quantum entanglement forms the basis for emerging technologies including quantum computers, which have a far greater capacity than today’s machines. Computers of the future fuelled by quantum bits could perform massive calculations – such as the factorisation of huge numbers – or complicated database searches.


“If you have one million names in a database then it can take a computer up to one million searches to find a particular one,” explains Professor Vedral. “A quantum computer could do this in the square root time; so in one thousand steps rather than a million.”

Professor Vedral’s group of theoretical quantum information will work with an experimental group, creating the UK’s largest centre for quantum work. “The UK – and Europe generally – is very strong on the theoretical side but often lacks the funding for experimental support. We are now in a unique position to be equally good at both,” said Professor Vedral.

The new group will test the fundamental ideas behind quantum mechanics – in particular how large an entangled system could be – and push them to their limits in a new £1.35m lab. “Bringing together theoretical and experimental groups means we can immediately implement our ideas and will allow us to take more risks,” said Professor Vedral.

Claire Jones | alfa
Further information:
http://reporter.leeds.ac.uk/509/s4.htm

More articles from Physics and Astronomy:

nachricht Scientists propose synestia, a new type of planetary object
23.05.2017 | University of California - Davis

nachricht Turmoil in sluggish electrons’ existence
23.05.2017 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>