Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Einstein, ‘spooky action’ and the future of computing

05.07.2005


A groundbreaking group of theoretical and experimental physicists is coming together to experiment with a phenomenon that disturbed Einstein and which could one day make super-fast quantum computers a possibility.



Centenary professor of quantum information science Vlatko Vedral (pictured) is an expert in the theoretical study of entanglement – a phenomenon Einstein called ‘spooky action at a distance’. Two ‘entangled’ particles are connected because the fate of one depends on the other. A change in one particle is communicated to the other even faster than the speed of light, breaking all traditional rules of physics.

Quantum entanglement forms the basis for emerging technologies including quantum computers, which have a far greater capacity than today’s machines. Computers of the future fuelled by quantum bits could perform massive calculations – such as the factorisation of huge numbers – or complicated database searches.


“If you have one million names in a database then it can take a computer up to one million searches to find a particular one,” explains Professor Vedral. “A quantum computer could do this in the square root time; so in one thousand steps rather than a million.”

Professor Vedral’s group of theoretical quantum information will work with an experimental group, creating the UK’s largest centre for quantum work. “The UK – and Europe generally – is very strong on the theoretical side but often lacks the funding for experimental support. We are now in a unique position to be equally good at both,” said Professor Vedral.

The new group will test the fundamental ideas behind quantum mechanics – in particular how large an entangled system could be – and push them to their limits in a new £1.35m lab. “Bringing together theoretical and experimental groups means we can immediately implement our ideas and will allow us to take more risks,” said Professor Vedral.

Claire Jones | alfa
Further information:
http://reporter.leeds.ac.uk/509/s4.htm

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>