Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A giant step toward tiny functional nanowires

01.07.2005


Carving a telephone pole is easy if you have the right tools, say a power saw and some large chisels. And with some much tinier tools you could even carve a design into a paper clip if you wanted to. But shrink your sights down to the nanoscale, to a nanowire that is 1,000 times smaller than the diameter of a paper clip, and you find there are no physical tools to do the job properly.



So a team of Northwestern University scientists turned to chemistry and developed a new method that can routinely and cheaply produce nanowires with gaps as small as five nanometers wide -- a feat that is unattainable using conventional lithographic techniques. The results will be published in the July 1 issue of the journal Science.

Carved gaps are essential to a nanowire’s function, and controlling those gaps would allow scientists and engineers to design with precision devices ranging from tiny integrated circuits to gene chips and protein arrays for diagnostics and drug discovery.


"With miniaturization happening across so many fields, our existing tools -- our chisels of a sort -- can’t control the shapes and spacing of these small structures," said Chad A. Mirkin, director of Northwestern’s Institute for Nanotechnology, who led the research team. "Our method allows us to selectively introduce gaps into the wires. These gaps can be filled with molecules, making them components for building small electronic and photonic devices or chemical and biological sensors."

The development of sophisticated nanoelectronics, said Mirkin, depends on the ability to fabricate and functionalize electrode gaps less than 20 nanometers wide for precise electrical measurements on nanomaterials and even individual molecules. While conventional techniques can’t make gaps much smaller than 20 nanometers wide, Mirkin’s method, called on-wire lithography, or OWL, has been able to produce gaps as small as 2.5 nanometers wide.

Mirkin and his team made the notched structures by first depositing into a porous template segmented nanowires made of two materials, one that is resistant to wet-chemical etching (gold) and one that is susceptible (nickel). The template is then dissolved, releasing the nanowires. Next, the wires are dispersed on a flat substrate, and a thin layer of glass is deposited onto their exposed faces. They are then suspended in solution, and a selective wet-chemical etching removes the nickel, leaving gold nanowires with well-defined gaps where the nickel used to be. (The glass is used as a bridging material, to hold the nanowire together.)

Using the OWL method, the researchers prepared nanowires with designed gaps of 5, 25, 40, 50, 70, 100, 140 and 210 nanometers wide. (A nanometer is one billionth of a meter or roughly the length of three atoms side by side. A DNA molecule is 2.5 nanometers wide.) In recent days, they have refined the technique to be able to make gaps as small as 2.5 nanometers wide.

"With dip-pen nanolithography, we can then drop into these gaps many different molecules, depending on what function we want the structure to have," said Mirkin, also George B. Rathmann Professor of Chemistry. "This really opens up the possibility of using molecules as components for a variety of nanoscale devices."

In addition to Mirkin, other authors on the Science paper are Lidong Qin (lead author), Sungho Park and Ling Huang of Northwestern University.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>