Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Size matters: Friction, adhesion change on atomic level

30.06.2005


Physicists have a pretty good idea of what to expect when friction and adhesion occur in the visible world. You jam on the brakes, for instance, and your tires and the highway interact to stop your car. You glue two pieces of wood together, and they stick.
But how slippery or sticky are things that are too small to see? When solid surfaces no more than a thousand atoms across brush past each other, will they respond like the rubber and the road? Will they adhere like the wood and the glue?

The answer turns out to be "It depends," according to Johns Hopkins physicists who used computer modeling to examine how friction and adhesion operate on the atomic level.


"Any surface made of individual atoms has ’bumps’ of atomic dimension, and being able to vary the placement of atoms [in the computer models] allowed us to quantify the influence of atomic structure," said Mark O. Robbins, a professor in the Henry A. Rowland Department of Physics and Astronomy in the university’s Krieger School of Arts and Sciences.

The modeling showed that surfaces from a few to a thousand atoms across, with the same shape, but with different local structures, or "bumps," behave quite differently, even if those surfaces are made of the same material, Robbins said. Local stresses and adhesion forces can vary by a factor of two or more, and friction can change tenfold, he said.

The research is reported in the June 16 issue of the journal Nature by Robbins and graduate student Binquan Luan. Their findings could one day help in the successful design of nanomachines, the name given to devices built by manipulating materials on an atomic scale. "Everyone knows that matter is made up of discrete atoms, yet most models of mechanical behavior ignore this and think of atoms as being ’smeared’ into an artificial continuous medium," Robbins said. "This approach works well when describing the behavior of larger machines, but what happens when the whole machine is only a few to a thousand atoms across? The answer is crucial to the function of man-made nanomachines and many biological processes."

Robbins’ and Luan examined contact between solid surfaces with "bumps" whose radii varied from about 100 to 1,000 atomic diameters. Bumps that size might be typical of nanomachine surfaces or the tips of atomic force microscopes used to measure mechanical properties at the atomic scale.

Using computer simulations, the team followed the displacements of up to 10 million atoms as the solid surfaces were pushed together. They then compared these displacements and the total adhesion and friction forces to calculations of the same forces using the standard "continuum theory," the model that views matter as having smeared rather than discrete atoms.

"Knowing the exact atomic structure and how each atom moved allowed us to test the two key assumptions of continuum theory," Robbins said. "While it described the internal response of solids down to nearly atomic scales, its assumption that surfaces are smooth and featureless failed badly" at the atomic level.

In a "News and Views" paper accompanying the Nature article, Jacob Israelachvili of University of California, Santa Barbara, noted that these results have fundamental implications for the limits of theories that try to "smear out" atomic structure, as well as indicating "how surfaces might be tailored in desirable ways ... if atomic-scale details are taken into consideration." This work is important because of the growing interest in nanotechnology, in which unwanted adhesion and excessive friction can cause devices to malfunction or just not to work, Robbins said. "Hopefully, this will help in the creation of new tools needed to guide the design of nanotechnology" he said.

Lisa DeNike | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Physics and Astronomy:

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>