Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Size matters: Friction, adhesion change on atomic level

30.06.2005


Physicists have a pretty good idea of what to expect when friction and adhesion occur in the visible world. You jam on the brakes, for instance, and your tires and the highway interact to stop your car. You glue two pieces of wood together, and they stick.
But how slippery or sticky are things that are too small to see? When solid surfaces no more than a thousand atoms across brush past each other, will they respond like the rubber and the road? Will they adhere like the wood and the glue?

The answer turns out to be "It depends," according to Johns Hopkins physicists who used computer modeling to examine how friction and adhesion operate on the atomic level.


"Any surface made of individual atoms has ’bumps’ of atomic dimension, and being able to vary the placement of atoms [in the computer models] allowed us to quantify the influence of atomic structure," said Mark O. Robbins, a professor in the Henry A. Rowland Department of Physics and Astronomy in the university’s Krieger School of Arts and Sciences.

The modeling showed that surfaces from a few to a thousand atoms across, with the same shape, but with different local structures, or "bumps," behave quite differently, even if those surfaces are made of the same material, Robbins said. Local stresses and adhesion forces can vary by a factor of two or more, and friction can change tenfold, he said.

The research is reported in the June 16 issue of the journal Nature by Robbins and graduate student Binquan Luan. Their findings could one day help in the successful design of nanomachines, the name given to devices built by manipulating materials on an atomic scale. "Everyone knows that matter is made up of discrete atoms, yet most models of mechanical behavior ignore this and think of atoms as being ’smeared’ into an artificial continuous medium," Robbins said. "This approach works well when describing the behavior of larger machines, but what happens when the whole machine is only a few to a thousand atoms across? The answer is crucial to the function of man-made nanomachines and many biological processes."

Robbins’ and Luan examined contact between solid surfaces with "bumps" whose radii varied from about 100 to 1,000 atomic diameters. Bumps that size might be typical of nanomachine surfaces or the tips of atomic force microscopes used to measure mechanical properties at the atomic scale.

Using computer simulations, the team followed the displacements of up to 10 million atoms as the solid surfaces were pushed together. They then compared these displacements and the total adhesion and friction forces to calculations of the same forces using the standard "continuum theory," the model that views matter as having smeared rather than discrete atoms.

"Knowing the exact atomic structure and how each atom moved allowed us to test the two key assumptions of continuum theory," Robbins said. "While it described the internal response of solids down to nearly atomic scales, its assumption that surfaces are smooth and featureless failed badly" at the atomic level.

In a "News and Views" paper accompanying the Nature article, Jacob Israelachvili of University of California, Santa Barbara, noted that these results have fundamental implications for the limits of theories that try to "smear out" atomic structure, as well as indicating "how surfaces might be tailored in desirable ways ... if atomic-scale details are taken into consideration." This work is important because of the growing interest in nanotechnology, in which unwanted adhesion and excessive friction can cause devices to malfunction or just not to work, Robbins said. "Hopefully, this will help in the creation of new tools needed to guide the design of nanotechnology" he said.

Lisa DeNike | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>