Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aussie astronomers prepare for smash hit

29.06.2005


Astronomers at Australia’s national radio and optical observatories will watch as a probe released from a spacecraft slams into a comet about 133 million km away at a speed of nearly 37,000 km/h (10.2 km per second).



The cosmic demolition derby takes place about 4pm AEST on 4 July when the comet, Tempel 1, will be most easily seen from the mid-Pacific. The 370 kg probe, carried by NASA’s Deep Impact spacecraft, has been travelling toward the comet for 173 days and has travelled over 431 million km. At the time of the collision the comet will be travelling at 108,000 km/h. The probe will be travelling in almost the same orbit at 80,000 km/h, and will hit the comet at an angle.

The impact may gouge out a crater up to 200 m across and 50 m deep, and could lead to a flow of gas and dust from the comet’s interior lasting for months. This outflow is what ground-based astronomers will be looking for. The comet will appear to be near the star Spica, the brightest star in the constellation Virgo, and also near the planet Jupiter. By the time the sun sets for eastern Australia it will be high in the sky, almost due north. Before the impact the comet will not be bright enough to see with the unaided eye. The impact may brighten it, but by how much is unknown.


When the copper-fortified probe hits the flying iceberg the crash will be observed by the Deep Impact spacecraft, the Hubble Space Telescope, and ground-based observatories around the world. In Australia CSIRO’s radio telescopes and the optical telescopes of the Anglo-Australian Observatory will be watching. CSIRO’s radio telescopes can work in daylight and so scientists will be able to watch the comet at the time of the impact, and for the following seven hours.

The Anglo-Australian Observatory’s telescopes will be able to see the comet about two hours after the impact, after the sun has set in eastern Australia. Australian telescopes are better placed than telescopes in Europe and North or South America to see any changes in the comet a few hours after the impact. "Australia has excellent radio telescopes," says Dr Paul Jones, a Visiting Fellow at the Australia Telescope National Facility, who leads the team using CSIRO’s telescopes. "We’ll be looking for specific molecules erupting from the comet--molecules you can most easily detect in the radio." "It’s not every day you get take part in an experiment like this," says CSIRO’s John Sarkissian, who will be observing with the Parkes telescope. "We probably won’t get another chance for some time."

Because the comet is moving across the sky faster than the background stars, astronomers will have to use special observing techniques. "We’re going to have to drive the telescope manually at a predetermined rate," says the Anglo-Australian Observatory’s Dr Rob Sharp, who is observing with the AAO’s UK Schmidt telescope at Siding Spring Observatory. "The Schmidt hasn’t been used in this way for quite some time, so we’ll be relying on the expertise of the telescope operators."

Smashing into the comet will give astronomers access to the pristine material of the comet’s interior. Comets preserve material from the early solar system but their surfaces have been chemically and physically altered by the Sun’s radiation. The impact of the probe into the comet has been likened to a mosquito running into a 767 airliner. The impact will not appreciably modify the comet’s orbital path and the comet poses no threat to Earth now or in the foreseeable future.

CSIRO’s Parkes telescope (near Parkes NSW) will be used to look for OH molecules, which are a sign of water in the comet. CSIRO’s Mopra telescope (near Coonabarabran NSW) and Australia Telescope Compact Array (near Narrabri NSW) will be used to look for HCN molecules, which are a general marker for a range of carbon-based molecules.

The Anglo-Australian Observatory’s UK Schmidt Telescope (near Coonabarabran NSW) will be used to measure chemical abundances at many spots on the comet simultaneously. The Anglo-Australian Telescope (near Coonabarabran NSW) will study several compounds containing carbon and nitrogen, to calculate isotope ratios for those elements.

Helen Sim | EurekAlert!
Further information:
http://www.csiro.au
http://deepimpact.jpl.nasa.gov

More articles from Physics and Astronomy:

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

nachricht Supermassive black hole model predicts characteristic light signals at cusp of collision
15.02.2018 | Rochester Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>