Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NASA’S Cassini reveals lake-like feature on Titan


Scientists are fascinated by a dark, lake-like feature recently observed on Saturn’s moon Titan. NASA’s Cassini spacecraft captured a series of images showing a marking, darker than anything else around it. It is remarkably lake-like, with smooth, shore-like boundaries unlike any seen previously on Titan.

"I’d say this is definitely the best candidate we’ve seen so far for a liquid hydrocarbon lake on Titan," said Dr. Alfred McEwen, Cassini imaging team member and a professor at the University of Arizona, Tucson. The suspected lake area measures 234 kilometers long by 73 kilometers wide (145 miles by 45 miles), about the size of Lake Ontario, on the U.S. Canadian border.

"This feature is unique in our exploration of Titan so far," said Dr. Elizabeth Turtle, Cassini imaging team associate at the University of Arizona. "Its perimeter is intriguingly reminiscent of the shorelines of lakes on Earth that are smoothed by water erosion and deposition."

The feature lies in Titan’s cloudiest region, which is presumably the most likely site of recent methane rainfall. This, coupled with the shore-like smoothness of the feature’s perimeter makes it hard for scientists to resist speculation about what might be filling the lake, if it indeed is one.

"It’s possible that some of the storms in this region are strong enough to make methane rain that reaches the surface," said Cassini imaging team member Dr. Tony DelGenio of NASA’s Goddard Institute for Space Studies in New York.

"Given Titan’s cold temperatures, it could take a long time for any liquid methane collecting on the surface to evaporate. So it might not be surprising for a methane-filled lake to persist for a long time," DelGenio added.

Despite earlier predictions, no definitive evidence for open bodies of liquid has been found on Titan. Cassini has not yet been in a favorable position for using its cameras to check for glints from possible surface liquids in the south polar region.

"Eventually, as the seasons change over a few years, the convective clouds may migrate northward to lower latitudes," said DelGenio, "If so, it will be interesting to see whether the Cassini cameras record changes in the appearance of the surface as well."

"An alternate explanation is that this feature was once a lake, but has since dried up, leaving behind dark deposits," Turtle said. Yet another possibility is that the lake is simply a broad depression filled by dark, solid hydrocarbons falling from the atmosphere onto Titan’s surface. In this case, the smooth outline might be the result of a process unrelated to rainfall, such as a sinkhole or a volcanic caldera.

"It reminds me of the lava lakes seen on Jupiter’s moon, Io," Dr. Torrence Johnson, an imaging team member at NASA’s Jet Propulsion Laboratory in Pasadena, Calif.

"It is already clear that whatever this lake-like feature turns out to be, it is only one of many puzzles that Titan will throw at us as we continue our reconnaissance of the surface over the next few years," said Dr. Carolyn Porco, imaging team leader at the Space Science Institute in Boulder, Colo.

Thirty-nine more Titan flybys are planned for Cassini’s prime mission. In future flybys the science teams will search for opportunities to observe the lake feature again and to look for mirror-like reflections from smooth surfaces elsewhere on Titan. Such reflections would strongly support the presence of liquids.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. JPL manages the Cassini mission for NASA’s Science Mission Directorate, Washington. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging team is based at the Space Science Institute in Boulder.

Preston Dyches | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

nachricht Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme
16.03.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>