Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA’S Cassini reveals lake-like feature on Titan

29.06.2005


Scientists are fascinated by a dark, lake-like feature recently observed on Saturn’s moon Titan. NASA’s Cassini spacecraft captured a series of images showing a marking, darker than anything else around it. It is remarkably lake-like, with smooth, shore-like boundaries unlike any seen previously on Titan.



"I’d say this is definitely the best candidate we’ve seen so far for a liquid hydrocarbon lake on Titan," said Dr. Alfred McEwen, Cassini imaging team member and a professor at the University of Arizona, Tucson. The suspected lake area measures 234 kilometers long by 73 kilometers wide (145 miles by 45 miles), about the size of Lake Ontario, on the U.S. Canadian border.

"This feature is unique in our exploration of Titan so far," said Dr. Elizabeth Turtle, Cassini imaging team associate at the University of Arizona. "Its perimeter is intriguingly reminiscent of the shorelines of lakes on Earth that are smoothed by water erosion and deposition."


The feature lies in Titan’s cloudiest region, which is presumably the most likely site of recent methane rainfall. This, coupled with the shore-like smoothness of the feature’s perimeter makes it hard for scientists to resist speculation about what might be filling the lake, if it indeed is one.

"It’s possible that some of the storms in this region are strong enough to make methane rain that reaches the surface," said Cassini imaging team member Dr. Tony DelGenio of NASA’s Goddard Institute for Space Studies in New York.

"Given Titan’s cold temperatures, it could take a long time for any liquid methane collecting on the surface to evaporate. So it might not be surprising for a methane-filled lake to persist for a long time," DelGenio added.

Despite earlier predictions, no definitive evidence for open bodies of liquid has been found on Titan. Cassini has not yet been in a favorable position for using its cameras to check for glints from possible surface liquids in the south polar region.

"Eventually, as the seasons change over a few years, the convective clouds may migrate northward to lower latitudes," said DelGenio, "If so, it will be interesting to see whether the Cassini cameras record changes in the appearance of the surface as well."

"An alternate explanation is that this feature was once a lake, but has since dried up, leaving behind dark deposits," Turtle said. Yet another possibility is that the lake is simply a broad depression filled by dark, solid hydrocarbons falling from the atmosphere onto Titan’s surface. In this case, the smooth outline might be the result of a process unrelated to rainfall, such as a sinkhole or a volcanic caldera.

"It reminds me of the lava lakes seen on Jupiter’s moon, Io," Dr. Torrence Johnson, an imaging team member at NASA’s Jet Propulsion Laboratory in Pasadena, Calif.

"It is already clear that whatever this lake-like feature turns out to be, it is only one of many puzzles that Titan will throw at us as we continue our reconnaissance of the surface over the next few years," said Dr. Carolyn Porco, imaging team leader at the Space Science Institute in Boulder, Colo.

Thirty-nine more Titan flybys are planned for Cassini’s prime mission. In future flybys the science teams will search for opportunities to observe the lake feature again and to look for mirror-like reflections from smooth surfaces elsewhere on Titan. Such reflections would strongly support the presence of liquids.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. JPL manages the Cassini mission for NASA’s Science Mission Directorate, Washington. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging team is based at the Space Science Institute in Boulder.

Preston Dyches | EurekAlert!
Further information:
http://www.nasa.gov/cassini
http://www.ciclops.org
http://saturn.jpl.nasa.gov

More articles from Physics and Astronomy:

nachricht Scientists propose synestia, a new type of planetary object
23.05.2017 | University of California - Davis

nachricht Turmoil in sluggish electrons’ existence
23.05.2017 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>