Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The future of nuclear energy: a boost for plasma physics at EPFL

28.06.2005


The Six Parties of the International Thermonuclear Experimental Reactor (ITER) consortium have reached a decision in their negotiations, specifying the location of the world’s first energy-producing fusion reactor in Cadarache, in Southern France. The €10 billion project will generate multiple research opportunities for the Plasma Physics Research Centre at the Ecole Polytechnique Fédérale de Lausanne (EPFL).



ITER’s future location in Cadarache will be doubly beneficial to EPFL. In its role as a National Centre of Competence, The Plasma Physics Research Centre (CRPP) is fully integrated with the nuclear fusion research programs within the Euratom-Swiss Confederation framework. CRPP will thus be called upon to participate in various specialized, high technology facets of the reactor’s construction.

This level of participation will confirm and solidify CRPP’s reputation in the plasma physics community. Minh Quang Tran, director of the Centre, also holds a position as president of the European Fusion Development Agreement, the organization that coordinates all fusion-related technology as well as all work involving the JET (Joint European Torus), a intermediate-generation tokamak-type experimental fusion reactor.


“The synergies that will develop in this research environment will reinforce the links between EPFL and the main European centers of fusion research excellence, in their common quest for a new and promising means of safe, efficient and sufficient energy production,” notes Tran. As a key player in this international involvement, Switzerland also stands to benefit in a larger sense from industrial spin-offs that will result from the project.

An enormous energy potential

Nuclear fusion represents a practically unlimited source of energy. Under extremely high pressures and temperatures, light atoms – isotopes of hydrogen, such as deuterium and tritium—come together, or fuse, producing enormous amounts of energy. A prime example is the Sun, where huge gravitational pressure allows fusion to take place at about 10 million degrees Celsius. At the gravitational pressure we experience on Earth, higher temperatures are required to generate fusion, and to date only tokamak-type reactors are capable of reaching the 100 million-degree-Celsius threshold where energy can be produced.

In the last several years, considerable technological progress has been made in fusion research, leading to high expectations for the ITER. With this reactor, studies done at the CRPP and elsewhere on the feasibility and functioning of a nuclear fusion-based centre of electricity production can be brought to a successful conclusion, and the groundwork can be laid for the first prototype commercial fusion reactor. Up to this point energy-producing nuclear reactors have used fission, not fusion, to generate energy. Fusion reactors have important advantages; power stations will be inherently safe because “meltdown” or “runaway reactions” cannot occur, and these reactors do not generate long-lasting radioactive waste. Fusion reactors don’t emit greenhouse gases, and the basic fuels – hydrogen and lithium – are abundant and available everywhere.

The energy production of ITER will be unprecedented: a single gram of deuterium fused with one and a half grams of tritium will produce ten million times as much energy as a gram of oil. The successful launch of these new technologies in the ITER reactor will set the stage for the successful use of fusion as an inexhaustible and sustainable energy source.

Mary Parlange | alfa
Further information:
http://www.epfl.ch

More articles from Physics and Astronomy:

nachricht NASA laser communications to provide Orion faster connections
30.03.2017 | NASA/Goddard Space Flight Center

nachricht Pinball at the atomic level
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>