Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The future of nuclear energy: a boost for plasma physics at EPFL

28.06.2005


The Six Parties of the International Thermonuclear Experimental Reactor (ITER) consortium have reached a decision in their negotiations, specifying the location of the world’s first energy-producing fusion reactor in Cadarache, in Southern France. The €10 billion project will generate multiple research opportunities for the Plasma Physics Research Centre at the Ecole Polytechnique Fédérale de Lausanne (EPFL).



ITER’s future location in Cadarache will be doubly beneficial to EPFL. In its role as a National Centre of Competence, The Plasma Physics Research Centre (CRPP) is fully integrated with the nuclear fusion research programs within the Euratom-Swiss Confederation framework. CRPP will thus be called upon to participate in various specialized, high technology facets of the reactor’s construction.

This level of participation will confirm and solidify CRPP’s reputation in the plasma physics community. Minh Quang Tran, director of the Centre, also holds a position as president of the European Fusion Development Agreement, the organization that coordinates all fusion-related technology as well as all work involving the JET (Joint European Torus), a intermediate-generation tokamak-type experimental fusion reactor.


“The synergies that will develop in this research environment will reinforce the links between EPFL and the main European centers of fusion research excellence, in their common quest for a new and promising means of safe, efficient and sufficient energy production,” notes Tran. As a key player in this international involvement, Switzerland also stands to benefit in a larger sense from industrial spin-offs that will result from the project.

An enormous energy potential

Nuclear fusion represents a practically unlimited source of energy. Under extremely high pressures and temperatures, light atoms – isotopes of hydrogen, such as deuterium and tritium—come together, or fuse, producing enormous amounts of energy. A prime example is the Sun, where huge gravitational pressure allows fusion to take place at about 10 million degrees Celsius. At the gravitational pressure we experience on Earth, higher temperatures are required to generate fusion, and to date only tokamak-type reactors are capable of reaching the 100 million-degree-Celsius threshold where energy can be produced.

In the last several years, considerable technological progress has been made in fusion research, leading to high expectations for the ITER. With this reactor, studies done at the CRPP and elsewhere on the feasibility and functioning of a nuclear fusion-based centre of electricity production can be brought to a successful conclusion, and the groundwork can be laid for the first prototype commercial fusion reactor. Up to this point energy-producing nuclear reactors have used fission, not fusion, to generate energy. Fusion reactors have important advantages; power stations will be inherently safe because “meltdown” or “runaway reactions” cannot occur, and these reactors do not generate long-lasting radioactive waste. Fusion reactors don’t emit greenhouse gases, and the basic fuels – hydrogen and lithium – are abundant and available everywhere.

The energy production of ITER will be unprecedented: a single gram of deuterium fused with one and a half grams of tritium will produce ten million times as much energy as a gram of oil. The successful launch of these new technologies in the ITER reactor will set the stage for the successful use of fusion as an inexhaustible and sustainable energy source.

Mary Parlange | alfa
Further information:
http://www.epfl.ch

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>