Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Adsorbent materials for the storage of hydrogen

27.06.2005


A research team from the Public University of Navarra has started a study of the design and development of absorbent materials that enable the storage of hydrogen, a clean fuel that can be used as an alternative to those derived from fossil fuels, such as petrol and diesel. The storage of this element is, in fact, a key process in the change over from internal combustion engines – contaminating and not very efficient, to cars with hydrogen fuel cells.



The project, entitled, Development of materials for storage of hydrogen by means of physical adsorption.

At present, hydrogen production “is not a problem”. For some years now, hydrogen has been obtained by means of catalytic reforming or by the electrolysis of water. However, the question hanging over the use of hydrogen as a fuel is its generation or storage in the quantities required for a means of transport and without it being dangerous – as we are dealing with a highly inflammable gas. Under normal conditions hydrogen is in a gaseous state and thus has to be kept under high pressure or, if we wish to reduce the pressure, the storage temperature has to be lowered. These two circumstances give rise to technological difficulties, apart from the added safety ones.


There are various ways to store hydrogen: pressurised, liquid, absorbed into metals (as hydrides) and physiadsorbed in suitable materials. This last method, involving the “physical adsorption onto porous materials”, is what is being developed in this current research project, the end of which is projected for next year. In concrete, the study is being carried out employing nanoporous materials the pore size of which is in the range of 0 to 10-6 metres.

The mentioned research team has commenced work on three families of materials: activated carbons, zeolites and stacked clays. These materials fulfil four requisites: they have mechanical resistance and are safe, apart from being light and cheap.

Storage based on physiadsorbtion provides a potentially higher energy efficiency than the rest of the mentioned storage options, given that the hydrogen is retained at a low temperature and 100% of the hydrogen adsorbed can be recovered. The low boiling point of hydrogen (-253ºC) makes it necessary to employ temperatures pf about -196ºC in order to attain sufficient amount of adsorbed hydrogen. The freeing of the physiadsorbed hydrogen can be, moreover, a rapid process and can be carried out easily with small changes of pressure and/or temperature.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>