Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers get clearer view of Earth’s atmosphere --- from the laboratory

24.06.2005


For scientists who want to discern the complex chemistry at work in Earth’s atmosphere, detecting a particular gas molecule can be as hard as finding a proverbial needle in a haystack.



Frank De Lucia, professor of physics at Ohio State University , and his colleagues recently used their FAST Scan Submillimeter Spectroscopy Technique (FASSST) to make the job easier.

The technique offers a way for scientists to examine the spectrum of light given off by a molecule. Each molecule has its own one-of-a-kind spectral pattern, like lines in a bar code. FASSST takes a snapshot of a wide range of spectral wavelengths, so scientists can easily recognize the pattern of the molecule they are looking for. Experiments that have traditionally taken weeks or months can be completed in a few seconds.


At the 60th International Symposium on Molecular Spectroscopy, hosted by Ohio State University , De Lucia and doctoral student Andrey Meshkov reported that the FASSST technique can be used to help scientists remove the signals from molecules that interfere with studies of gas systems such as Earth’s atmosphere.

De Lucia used the example of a problem common to his collaborators at NASA: satellite measurements of chemicals involved in the creation or destruction of ozone.

“Say you’re trying to look though the atmosphere to see small amounts of hydrogen peroxide. You have to understand how the signal from the hydrogen peroxide changes as it travels through the atmosphere to a satellite,” he said. “The path that the signal follows can be thousands of kilometers long, so you have to be able to subtract out the part of the atmosphere that you don’t care about to get at the really small effects that you do care about.”

The background signal from other molecules that scientists are not interested in -- frequently molecules of water, oxygen, or nitrogen -- is called the continuum. FASSST lets scientists get a handle on the continuum signal by essentially freezing an atmosphere in time so scientists can remove the parts they don’t want.

In their latest results reported at the symposium, De Lucia and Meshkov used FASSST to simultaneously measure the contributions of water, oxygen, and nitrogen to the continuum in an experimental gas mixture they created in the laboratory.

De Lucia said his colleagues at NASA and elsewhere can use experimental data from FASSST to better interpret satellite data and reduce error in their measurements.

The same technique aids detection of chemicals in the lab in general. Several of the presentations at the symposium are based on FASSST analyses of chemicals important to research in astronomy and biology.

Frank De Lucia | EurekAlert!
Further information:
http://www.osu.edu

More articles from Physics and Astronomy:

nachricht Structured light and nanomaterials open new ways to tailor light at the nanoscale
23.04.2018 | Academy of Finland

nachricht On the shape of the 'petal' for the dissipation curve
23.04.2018 | Lobachevsky University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>