Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers get clearer view of Earth’s atmosphere --- from the laboratory

24.06.2005


For scientists who want to discern the complex chemistry at work in Earth’s atmosphere, detecting a particular gas molecule can be as hard as finding a proverbial needle in a haystack.



Frank De Lucia, professor of physics at Ohio State University , and his colleagues recently used their FAST Scan Submillimeter Spectroscopy Technique (FASSST) to make the job easier.

The technique offers a way for scientists to examine the spectrum of light given off by a molecule. Each molecule has its own one-of-a-kind spectral pattern, like lines in a bar code. FASSST takes a snapshot of a wide range of spectral wavelengths, so scientists can easily recognize the pattern of the molecule they are looking for. Experiments that have traditionally taken weeks or months can be completed in a few seconds.


At the 60th International Symposium on Molecular Spectroscopy, hosted by Ohio State University , De Lucia and doctoral student Andrey Meshkov reported that the FASSST technique can be used to help scientists remove the signals from molecules that interfere with studies of gas systems such as Earth’s atmosphere.

De Lucia used the example of a problem common to his collaborators at NASA: satellite measurements of chemicals involved in the creation or destruction of ozone.

“Say you’re trying to look though the atmosphere to see small amounts of hydrogen peroxide. You have to understand how the signal from the hydrogen peroxide changes as it travels through the atmosphere to a satellite,” he said. “The path that the signal follows can be thousands of kilometers long, so you have to be able to subtract out the part of the atmosphere that you don’t care about to get at the really small effects that you do care about.”

The background signal from other molecules that scientists are not interested in -- frequently molecules of water, oxygen, or nitrogen -- is called the continuum. FASSST lets scientists get a handle on the continuum signal by essentially freezing an atmosphere in time so scientists can remove the parts they don’t want.

In their latest results reported at the symposium, De Lucia and Meshkov used FASSST to simultaneously measure the contributions of water, oxygen, and nitrogen to the continuum in an experimental gas mixture they created in the laboratory.

De Lucia said his colleagues at NASA and elsewhere can use experimental data from FASSST to better interpret satellite data and reduce error in their measurements.

The same technique aids detection of chemicals in the lab in general. Several of the presentations at the symposium are based on FASSST analyses of chemicals important to research in astronomy and biology.

Frank De Lucia | EurekAlert!
Further information:
http://www.osu.edu

More articles from Physics and Astronomy:

nachricht MEMS chips get metatlenses
21.02.2018 | American Institute of Physics

nachricht International team publishes roadmap to enhance radioresistance for space colonization
21.02.2018 | Biogerontology Research Foundation

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>