Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What’s Inside a Comet? Brown Geologist Helps NASA Find Out

23.06.2005


When comet Tempel 1 collides with a NASA space probe in the early morning hours of July 4, 2005, scientists at the Jet Propulsion Laboratory expect some holiday sizzle – a brilliant flash and a dramatic spray of debris.



This cosmic collision will create a crater exposing Tempel 1’s interior. Like all comets, Tempel 1 consists of the frozen remains of material that formed the solar system. But what, precisely, is this stuff? How is it put together? Peter Schultz, crater expert, will help find out.

Schultz is a professor of geological sciences at Brown University and a leading expert in impact cratering, the science of what happens when a massive, fast-moving cosmic train slams into something. His work helps explain when and how comets, asteroids and other space travelers shaped the face of planets such as Earth and Mars, as well as the Moon and other satellites.


Schultz’s expertise landed him a spot in the inner scientific circle for “Deep Impact,” the joint space mission coordinated by the Jet Propulsion Lab and the University of Maryland. Schultz is one of 13 co-investigators overseeing the mission, which will provide a first-ever look inside a comet when scientists release an impactor into Tempel 1’s path for a planned collision.

“This is heady stuff,” Schultz said. “The ice inside comets has been in the deep freeze since the creation of the solar system. Now we are finally going to see what this stuff looks like and what it is made of. This is important information. Comets may have been the messengers that carried the ingredients of life to Earth.”

To prepare for the mission, Schultz ran dozens of experiments at NASA’s Ames Vertical Gun Range in California. Using a machine three stories tall, Schultz fired marble-size beads into surfaces of dust, ice and snow. The beads – which travel more than 10 times faster than a speeding bullet – made craters of all shapes and sizes. Working with different combinations of ice, snow and dust in various thicknesses, Schultz recorded the trajectory of flying debris as well as crater size and speed of formation.

These observations will be important for Deep Impact. Cameras and an infrared spectrometer aboard an orbiter will record the Tempel 1 collision, relaying images and data during creation of the crater which can be used to determine the comet’s composition.

“We know comets are like dirty snowballs,” Schultz said. “But is the crust thick or thin? Is the interior light or dense? By running these scenarios, we can make better predictions when the real impact happens.

“Comets were made 4.5 billion years ago, yet remain such mysteries,” he said. “Now we’re going to get our closest look at one. That’s why this project is cool.”

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Physics and Astronomy:

nachricht New type of smart windows use liquid to switch from clear to reflective
14.12.2017 | The Optical Society

nachricht New ultra-thin diamond membrane is a radiobiologist's best friend
14.12.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>