Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What’s Inside a Comet? Brown Geologist Helps NASA Find Out

23.06.2005


When comet Tempel 1 collides with a NASA space probe in the early morning hours of July 4, 2005, scientists at the Jet Propulsion Laboratory expect some holiday sizzle – a brilliant flash and a dramatic spray of debris.



This cosmic collision will create a crater exposing Tempel 1’s interior. Like all comets, Tempel 1 consists of the frozen remains of material that formed the solar system. But what, precisely, is this stuff? How is it put together? Peter Schultz, crater expert, will help find out.

Schultz is a professor of geological sciences at Brown University and a leading expert in impact cratering, the science of what happens when a massive, fast-moving cosmic train slams into something. His work helps explain when and how comets, asteroids and other space travelers shaped the face of planets such as Earth and Mars, as well as the Moon and other satellites.


Schultz’s expertise landed him a spot in the inner scientific circle for “Deep Impact,” the joint space mission coordinated by the Jet Propulsion Lab and the University of Maryland. Schultz is one of 13 co-investigators overseeing the mission, which will provide a first-ever look inside a comet when scientists release an impactor into Tempel 1’s path for a planned collision.

“This is heady stuff,” Schultz said. “The ice inside comets has been in the deep freeze since the creation of the solar system. Now we are finally going to see what this stuff looks like and what it is made of. This is important information. Comets may have been the messengers that carried the ingredients of life to Earth.”

To prepare for the mission, Schultz ran dozens of experiments at NASA’s Ames Vertical Gun Range in California. Using a machine three stories tall, Schultz fired marble-size beads into surfaces of dust, ice and snow. The beads – which travel more than 10 times faster than a speeding bullet – made craters of all shapes and sizes. Working with different combinations of ice, snow and dust in various thicknesses, Schultz recorded the trajectory of flying debris as well as crater size and speed of formation.

These observations will be important for Deep Impact. Cameras and an infrared spectrometer aboard an orbiter will record the Tempel 1 collision, relaying images and data during creation of the crater which can be used to determine the comet’s composition.

“We know comets are like dirty snowballs,” Schultz said. “But is the crust thick or thin? Is the interior light or dense? By running these scenarios, we can make better predictions when the real impact happens.

“Comets were made 4.5 billion years ago, yet remain such mysteries,” he said. “Now we’re going to get our closest look at one. That’s why this project is cool.”

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>