Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pitt and Bell Labs researchers send ’heavy photons’ over world-record distances

22.06.2005


Unsurpassed exciton distances, lifetimes may lead to new form of optical communication



When light hits a semiconductor material and is absorbed, its photons can become "excitons," sometimes referred to as "heavy photons" because they carry energy, like photons, but have mass, like electrons. Excitons typically exist for only a short time--trillionths of a second--and travel only a few microns before turning back into photons, which are then emitted from the material.

In the June 10 issue of the journal Physical Review Letters, scientists from the University of Pittsburgh and Bell Labs, the R&D arm of Lucent Technologies, report that they have designed and demonstrated a two-dimensional semiconductor structure in which excitons exist longer and travel farther than previously recorded. In their paper, titled "Long-Distance Diffusion of Excitons in Double Quantum Well Structures," David Snoke, senior author and associate professor of physics and astronomy at Pitt, and his colleagues report a system in which excitons move freely over distances of hundreds of microns. Their findings open up the possibility of new applications, such as excitonic circuits.


The researchers "stretched out" the excitons by pulling them apart with an electrical field. This extended the excitons’ lifetimes by a million (up to 30 microseconds) and expanded the distances the excitons traveled (up to a millimeter). They were able to "see" the excitons by observing the emitted photons. The semiconductor structures designed in the experiment are of "world-record quality," said Snoke.

The ability to control excitons over long distances could lead to excitonic circuits in which photons are converted directly into excitons, which are then steered around a chip and converted back into photons again at a different location, such as an optical memory device, said Snoke. "It’s another tool in our optics toolbox," he said.

"We’re doing this with semiconductor circuits now designed for moving electrons," he added. "It’s a completely new type of control over the system."

Other authors of the paper are Zoltan Voros and Ryan Balili, graduate students in Pitt’s Department of Physics and Astronomy, and Loren Pfeiffer and Kenneth West of Bell Labs.

Karen Hoffmann | EurekAlert!
Further information:
http://www.pitt.edu

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>