Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First experimental evidence of quantum monodromy

22.06.2005


Ohio State University physicists have obtained the first-ever experimental evidence of a particular quantum mechanical effect –- one that was theorized a decade ago.

The effect, called quantum monodromy (Greek for “once around”), relates in part to the behavior of molecules based on their atomic structure and vibrational frequencies. A better understanding of quantum monodromy could have implications in astronomy, atmospheric science, and biology.

The physicists reported their results at the 60th International Symposium on Molecular Spectroscopy, held at Ohio State University .



In some molecules, the atomic bonds act like joints where the molecule can bend and rotate unusually far from their normal positions, like a human arm can bend or rotate at the elbow or shoulder, explained Manfred Winnewisser, adjunct professor of physics at Ohio State . The movement changes the shape of the molecule, and affects its vibrational and rotational energy as well as how it interacts with other molecules.

The water molecule, for instance, exhibits this behavior, and scientists suspect that the bending of that molecule might affect the function of water vapor in the atmosphere. “In order to understand the absorption of solar radiation in the atmosphere, one has to understand the proper physics,” Winnewisser said. “So an improved understanding of physics or chemistry or biology is actually the most important application of studies of monodromy.”

To understand the movement of such molecules, scientists draw a graph, a kind of map of the molecule’s energy. For molecules that exhibit quantum monodromy, the map looks like an upright cylinder with a bulge rising from the bottom, like the bottom of a wine or champagne bottle. The top of the bulge is a critical point where the shape of the molecule changes, Winnewisser said.

To learn more about what happens at this “monodromy point,” the Ohio State physicists studied the molecule cyanogen isothiocyanate (NCNCS). Its atoms fit together in a long chain that they hoped would exhibit the bending they wanted to see.

A special laboratory instrument enabled the test. Frank De Lucia, professor of physics at Ohio State, and his colleagues designed the instrument to utilize their FAst Scan Submillimeter Spectroscopy Technique (FASSST).

The technique offers a quick way for scientists to examine the spectrum of electromagnetic radiation absorbed by a molecule. Each molecule has its own one-of-a-kind spectral pattern, like lines in a bar code. FASSST takes a quick scan of a wide range of spectral wavelengths, so scientists can easily recognize the pattern of the molecule they are looking for.

In the case of the NCNCS molecule, Winnewisser and his colleagues used FASSST to record a series of spectral features, including the features corresponding to the energy of the molecule at the monodromy point.

Ivan Medvedev, a doctoral student in physics, and his colleagues, then used software he developed to reveal patterns in the spectrum. The open-source software, called Computer Aided Assignment of Asymmetric Rotor Spectra (CAAARS), is available for download from Medvedev’s Web page ( http://www.physics.ohio-state.edu/~medvedev/caaars.htm ).

When they plotted the spectrum with CAAARS, the physicists could identify patterns that exactly matched patterns in the predicted spectrum for a molecule exhibiting quantum monodromy.

Other team members on this project included Brenda Winnewisser, also adjunct professor, and Markus Behnke, a postdoctoral researcher, both of the Ohio State Department of Physics, and Stephen Ross, professor of physics at the University of New Brunswick in Canada.

Manfred Winnewisser | EurekAlert!
Further information:
http://www.physics.ohio-state.edu/~medvedev/caaars.htm
http://www.ohio-state.edu

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>