Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First experimental evidence of quantum monodromy

22.06.2005


Ohio State University physicists have obtained the first-ever experimental evidence of a particular quantum mechanical effect –- one that was theorized a decade ago.

The effect, called quantum monodromy (Greek for “once around”), relates in part to the behavior of molecules based on their atomic structure and vibrational frequencies. A better understanding of quantum monodromy could have implications in astronomy, atmospheric science, and biology.

The physicists reported their results at the 60th International Symposium on Molecular Spectroscopy, held at Ohio State University .



In some molecules, the atomic bonds act like joints where the molecule can bend and rotate unusually far from their normal positions, like a human arm can bend or rotate at the elbow or shoulder, explained Manfred Winnewisser, adjunct professor of physics at Ohio State . The movement changes the shape of the molecule, and affects its vibrational and rotational energy as well as how it interacts with other molecules.

The water molecule, for instance, exhibits this behavior, and scientists suspect that the bending of that molecule might affect the function of water vapor in the atmosphere. “In order to understand the absorption of solar radiation in the atmosphere, one has to understand the proper physics,” Winnewisser said. “So an improved understanding of physics or chemistry or biology is actually the most important application of studies of monodromy.”

To understand the movement of such molecules, scientists draw a graph, a kind of map of the molecule’s energy. For molecules that exhibit quantum monodromy, the map looks like an upright cylinder with a bulge rising from the bottom, like the bottom of a wine or champagne bottle. The top of the bulge is a critical point where the shape of the molecule changes, Winnewisser said.

To learn more about what happens at this “monodromy point,” the Ohio State physicists studied the molecule cyanogen isothiocyanate (NCNCS). Its atoms fit together in a long chain that they hoped would exhibit the bending they wanted to see.

A special laboratory instrument enabled the test. Frank De Lucia, professor of physics at Ohio State, and his colleagues designed the instrument to utilize their FAst Scan Submillimeter Spectroscopy Technique (FASSST).

The technique offers a quick way for scientists to examine the spectrum of electromagnetic radiation absorbed by a molecule. Each molecule has its own one-of-a-kind spectral pattern, like lines in a bar code. FASSST takes a quick scan of a wide range of spectral wavelengths, so scientists can easily recognize the pattern of the molecule they are looking for.

In the case of the NCNCS molecule, Winnewisser and his colleagues used FASSST to record a series of spectral features, including the features corresponding to the energy of the molecule at the monodromy point.

Ivan Medvedev, a doctoral student in physics, and his colleagues, then used software he developed to reveal patterns in the spectrum. The open-source software, called Computer Aided Assignment of Asymmetric Rotor Spectra (CAAARS), is available for download from Medvedev’s Web page ( http://www.physics.ohio-state.edu/~medvedev/caaars.htm ).

When they plotted the spectrum with CAAARS, the physicists could identify patterns that exactly matched patterns in the predicted spectrum for a molecule exhibiting quantum monodromy.

Other team members on this project included Brenda Winnewisser, also adjunct professor, and Markus Behnke, a postdoctoral researcher, both of the Ohio State Department of Physics, and Stephen Ross, professor of physics at the University of New Brunswick in Canada.

Manfred Winnewisser | EurekAlert!
Further information:
http://www.physics.ohio-state.edu/~medvedev/caaars.htm
http://www.ohio-state.edu

More articles from Physics and Astronomy:

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

nachricht Airborne thermometer to measure Arctic temperatures
11.01.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>