Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New magnetic herding technique proposed to manipulate the very small

21.06.2005


Engineers have introduced a new magnetic shepherding approach for deftly moving or positioning the kinds of tiny floating objects found within organisms, in order to advance potential applications in fields ranging from medicine to nanotechnology.

The authors of a new research article said their method avoids pitfalls of using tiny light beams, electric currents or even a competing magnetic approach to micromanipulate so-called "colloidal" objects. "Biology is composed primarily of colloidal materials, things larger than a few billionths of a meter that are suspended in solution and don’t settle rapidly," said Benjamin Yellen, who developed this "magnetic nanoparticle assembler" technique while obtaining his doctorate at Drexel University.

"They could be cells or large molecules; they are also being investigated for a variety of new devices, such as miniature lasers or semiconducting components," added Yellen, who in September will become an assistant professor of mechanical engineering and materials science at Duke University’s Pratt School of Engineering.



Yellen is first author of a research paper on the method, already available on-line and to be published in print in the Tuesday, June 21, 2005, issue of Proceedings of the National Academy of Sciences (PNAS). His coauthors are Gary Friedman, the Drexel professor of electrical and computer engineering who supervised his Ph.D. work, and Drexel graduate student Ondrej Hovorka.

The research was supported by the National Science Foundation and Department of Defense.

According to the paper, other investigators are currently focusing either on using laser light beams or electric fields to "transport, sort or assemble microscopic objects." But Yellen’s research group contends that "neither technique has demonstrated sufficient flexibility required for widespread adoption."

Yellen, who is a postdoctoral researcher at Children’s Hospital of Philadelphia, said in an interview that while high-intensity lasers -- like fictional Star Trek tractor beams -- can move around tiny objects, they can also destructively overheat biological materials. In addition, micromanipulating large numbers of particles can require confining unmanageable numbers of individual light beams in small spaces.

Meanwhile, using electricity as a micromanipulator requires space-consuming grids of electrical circuitry, he added. And electrical fields can also trigger disruptive chemical reactions. "The big advantage to using magnetism is that very few things in nature are magnetically susceptible," he said.

The PNAS authors’ paper described how they demonstrated their technique by first patterning permanent rectangular and circular "magnetic traps," each with millionths of a meter dimensions, on silicon or glass wafers. Each trap was made of cobalt, an element that, like iron, is magnetic. Over those trap-patterned wafers the authors then added a fluid containing swarms of suspended magnetic iron oxide nanoparticles, with each particle measuring only about 10 billionths of a meter ("nano" means "billionths").

Into this "ferrofluid" (the prefix "ferro" refers to "iron") they then floated non-magnetic microscopic beads of the colloid latex, each bead measuring between 90 and 5,000 nanometers. Finally, the researchers set up an additional switchable external magnetic field that, when switched on, could alter the magnetic field surrounding the permanent magnetic traps.

This arrangement allowed the non-magnetic latex beads to be herded around, even arranged into a variety of complex patterns, by varying how the dueling magnetic fields influenced the shepherding swarms of magnetic iron oxide nanoparticles. Under the direction of changeable magnetic fields, the particle swarms acted collectively like nano-scale tugboats to push and pull the comparatively large beads of colloids. The beads themselves were color-labeled so their movements could be traced under microscopic observation. "In a way, bead movement is analogous to the movement of a train along a railroad track," wrote the authors in their PNAS paper.

While "trap magnetization establishes the track," fields from the switchable external magnet "provide locomotion," they explained. Moreover, the track could be switched to new orientations by adjusting the interplay of fields between the permanent traps and the switchable magnetic source. The authors suggested that the micromotions of this magnetic nanoparticle assembler might be made programmable by modifications of today’s magnetic recording technology.

They listed a number of potential applications, ranging from the speedier assembly of molecules for biosensors or hybridization experiments, to precision arrangements of cells, bacteria and viruses in futuristic medical diagnostic devices, to the assembly of advanced microelectronic components, such as nanowire transistors.

Their paper also noted that a competing magnetic micromanipulation technique already exists that requires pre-bonding to "magnetic particle carriers."

"You have to do a lot of chemical steps along the way, so it’s not so convenient," Yellen said of that competing approach. "It would be much more convenient to just simply mix the nonmagnetic materials with a ferrofluid and have them moved around without having to attach them to a magnetic carrier."

Once he arrives at Duke, Yellen said he plans to apply his magnetic nanoparticle assembler approach to designing advanced biosensors and cell membrane probes.

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu

More articles from Physics and Astronomy:

nachricht Squeezing light at the nanoscale
17.06.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht The Fraunhofer IAF is a »Landmark in the Land of Ideas«
15.06.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>