Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New NIST method improves accuracy of spectrometers


Measurements of the intensity of light at different wavelengths can be made more accurately now, thanks to a new, simple method for correcting common instrument errors. The new method, developed by researchers at the National Institute of Standards and Technology (NIST), will benefit fields such as color measurement, lighting development, remote sensing, biotechnology and astronomy.

The NIST method improves the measurement accuracy of spectrometers, devices that measure optical radiation at different wavelengths. Spectrometers are used widely in industrial settings and academic research to analyze the emissions from lamps or other light sources, as well as to analyze optical properties of materials. The NIST method corrects errors arising from the presence of stray light, unwanted scattered radiation within an instrument.

Stray light is often the major source of measurement uncertainty for commonly used spectrometers. It can cause unexpectedly large systematic errors, even as much as 100 percent depending upon the application, when an instrument tries to measure a very low level of radiation at some wavelength while there are relatively high levels in other wavelength regions. The new NIST method nearly eliminates stray light errors, to a level less than 0.001 percent of the total signal, a desirable level for most industrial and scientific applications. This allows very accurate measurement of low-power components of radiation and accurate measurements across a large dynamic range of intensities.

NIST researchers implemented and validated the method using a commercial CCD-array spectrograph, which measures light in the visible region instantly. They characterized the response to monochromatic emissions from tunable lasers that covered the instrument’s full spectral range. Calculations were made using the measured data to produce a matrix that quantified the magnitude of the stray-light signal for every element (or pixel) of the detector array for every wavelength of light. The matrix then was used to correct the instrument’s output signals for stray light. The method is simple and fast enough to be incorporated into an instrument’s software to perform real-time stray-light corrections without much reduction in the instrument’s speed.

NIST recently began offering a special calibration service to characterize spectrometers for stray light using the new method. Plans are being made to transfer the technique to industry, and a technical paper is in preparation. For further information about the calibration service, contact Yuqin Zong at, or (301) 975-2332.

Laura Ost | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>