Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists put the squeeze on electron spins

17.06.2005


University of California scientists working at Los Alamos National Laboratory have developed a novel method for controlling and measuring electron spins in semiconductor crystals of GaAs (gallium arsenide). The work suggests an alternative--and perhaps even superior--method of spin manipulation for future generations of "semiconductor spintronic" devices.



In research published in today’s issue of the scientific journal Physical Review Letters, Scott Crooker and Darryl Smith describe their use of a scanning optical microscope to acquire two-dimensional images of spin-polarized electrons flowing in semiconductor crystals mounted on an optical cryostat while using a miniature "cryogenic vise" to apply gentle pressure. By squeezing the crystal in a controlled manner, and without applying magnetic fields, the researchers were able to watch the electron spins rotate (or precess) as they flow through the crystal.

According to Crooker, "electrons, in addition to their negative electronic charge, also possess a magnetic "spin". That is, each electron behaves like a little bar magnet, with north and south poles. Electron spins in semiconductors are typically manipulated by applying a magnetic field, but we’ve found we can do the same thing, in a controlled fashion, using the "vise". And, the resulting degree of spatial spin coherence is remarkably more robust compared to the spin precession induced by a magnetic field."


The cryogenic vise operates at only a few degrees above absolute zero (4 degrees Kelvin) and can be used to intentionally tip, rotate, and flip the electron spins. The research was conducted at the Pulsed Field Facility of the National High Magnetic Field Laboratory (NHMFL) at Los Alamos.

The research was funded by Los Alamos Laboratory-Directed Research and Development (LDRD) funding and the Defense Advanced Research Project Agency’s SPins IN Semiconductors (SPINS) Program, which is designed to encourage research to exploit the spin degree of freedom of the electron and create revolutionary electronic devices with the potential to be very fast at very low power.

Alex H. Lacerda, Director of NHMFL-Los Alamos, states, "This work is an excellent example of how the LDRD program engenders strong inter-divisional relationships and enduring experimental-theoretical collaborations at Los Alamos for the pursuit of basic science."

The research fits into a broader area of expertise that Los Alamos National Laboratory maintains in the field of atomic physics in general, and spintronics research in particular.

Los Alamos National Laboratory is operated by the University of California for the National Nuclear Security Administration of the U.S. Department of Energy and works in partnership with NNSA’s Sandia and Lawrence Livermore national laboratories to support NNSA in its mission.

Los Alamos enhances global security by ensuring the safety and reliability of the U.S. nuclear deterrent, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to defense, energy, environment, infrastructure, health and national security concerns.

Todd Hanson | EurekAlert!
Further information:
http://www.lanl.gov

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>