Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ripples In Cosmic Neutrino Background Measured For The First Time

16.06.2005


This release from the University of Oxford has been forwarded for your information by Peter Bond, RAS communications officer. Forwarding does not imply endorsement by the RAS.



University of Oxford Press Release

Astrophysicists from the Universities of Oxford and Rome have for the first time found evidence of ripples in the Universe’s primordial sea of neutrinos, confirming the predictions of both Big Bang theory and the Standard Model of particle physics.


Neutrinos are elementary particles with no charge and very little mass, which are extremely difficult to study due to their very weak interaction with matter. Yet pinning down the physical properties of neutrinos is of paramount importance to scientists attempting to understand the fundamental building blocks of Nature. According to the standard Big Bang model, neutrinos permeate the Universe at a density of about 150 per cubic centimetre. The Earth is therefore immersed in an ocean of neutrinos, without us ever noticing.

Although it is impossible to measure this ‘Cosmic Neutrino Background’ directly with present-day technology, physicists predict that ripples or waves in it have an impact on the growth of structures in the Universe.

In research to be published in the journal Physical Review Letters, Dr. Roberto Trotta, Lockyer Fellow of the Royal Astronomical Society at Oxford’s Department of Physics, and Dr. Alessandro Melchiorri of La Sapienza University in Rome were able to demonstrate for the first time the existence of ripples of primordial origin in the Cosmic Neutrino Background.

The discovery, made by combining data produced by the NASA WMAP (Wilkinson Microwave Anisotropy Probe) satellite and the Sloan Digital Sky Survey, confirms the predictions of both the Big Bang theory and the Standard Model of particle physics. The research has important implications for the study of neutrinos, showing that theories of the infinitely large (cosmology) and the infinitely small (particle physics) are in agreement.

Dr. Trotta said: “This research provides important new evidence in favour of the current cosmological model, unifying it with fundamental physics theories. Cosmology is becoming a more and more powerful laboratory where physics not easily accessible on Earth can be tested and verified. The high quality of recent cosmological data allows us to investigate neutrinos in the cosmological framework, obtaining measurements which are competitive with – if not superior to – particle accelerator findings.”

Dr. Roberto Trotta | alfa
Further information:
http://www.ox.ac.uk/news/

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>