Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thin films of silicon nanoparticles roll into flexible nanotubes

15.06.2005


By depositing nanoparticles onto a charged surface, researchers at the University of Illinois at Urbana-Champaign have crafted nanotubes from silicon that are flexible and nearly as soft as rubber.



"Resembling miniature scrolls, the nanotubes could prove useful as catalysts, guided laser cavities and nanorobots," said Sahraoui Chaieb, a professor of mechanical and industrial engineering at Illinois and a researcher at the Beckman Institute for Advanced Science and Technology.

To create their flexible nanotubes, Chaieb and his colleagues – physics professor Munir Nayfeh and graduate research assistant Adam Smith – start with a colloidal suspension of silicon nanoparticles (each particle is about 1 nanometer in diameter) in alcohol. By applying an electric field, the researchers drive the nanoparticles to the surface of a positively charged substrate, where they form a thin film.


Upon drying, the film spontaneously detaches from the substrate and rolls into a nanotube. Nanotubes with diameters ranging from 2 to 5 microns and up to 100 microns long have been achieved.

Using an atomic force microscope, the researchers found that the Young’s modulus (a measure of a material’s elasticity) of the film was about 5,000 times smaller than that of bulk silicon, but just 30 times larger than that of rubber.

"We suspect that the nanotubes consist of silicon nanoparticles held together by oxygen atoms to form a three-dimensional network," Chaieb said. "The nanotubes are soft and flexible because of the presence of the oxygen atoms. This simple bottom-up approach will give other researchers ideas how to build inexpensive active structures for lab-on-chip applications."

"Because the silicon nanoparticles – which are made using a basic electrochemical procedure – have properties such as photoluminescence, photostability and stimulated emission, the resulting nanotubes might serve as nanodiodes and flexible lasers that could be controlled with an electric field," Nayfeh said.

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>