Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thin films of silicon nanoparticles roll into flexible nanotubes

15.06.2005


By depositing nanoparticles onto a charged surface, researchers at the University of Illinois at Urbana-Champaign have crafted nanotubes from silicon that are flexible and nearly as soft as rubber.



"Resembling miniature scrolls, the nanotubes could prove useful as catalysts, guided laser cavities and nanorobots," said Sahraoui Chaieb, a professor of mechanical and industrial engineering at Illinois and a researcher at the Beckman Institute for Advanced Science and Technology.

To create their flexible nanotubes, Chaieb and his colleagues – physics professor Munir Nayfeh and graduate research assistant Adam Smith – start with a colloidal suspension of silicon nanoparticles (each particle is about 1 nanometer in diameter) in alcohol. By applying an electric field, the researchers drive the nanoparticles to the surface of a positively charged substrate, where they form a thin film.


Upon drying, the film spontaneously detaches from the substrate and rolls into a nanotube. Nanotubes with diameters ranging from 2 to 5 microns and up to 100 microns long have been achieved.

Using an atomic force microscope, the researchers found that the Young’s modulus (a measure of a material’s elasticity) of the film was about 5,000 times smaller than that of bulk silicon, but just 30 times larger than that of rubber.

"We suspect that the nanotubes consist of silicon nanoparticles held together by oxygen atoms to form a three-dimensional network," Chaieb said. "The nanotubes are soft and flexible because of the presence of the oxygen atoms. This simple bottom-up approach will give other researchers ideas how to build inexpensive active structures for lab-on-chip applications."

"Because the silicon nanoparticles – which are made using a basic electrochemical procedure – have properties such as photoluminescence, photostability and stimulated emission, the resulting nanotubes might serve as nanodiodes and flexible lasers that could be controlled with an electric field," Nayfeh said.

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht NUS engineers develop novel method for resolving spin texture of topological surface states using transport measurements
26.04.2018 | National University of Singapore

nachricht European particle-accelerator community publishes the first industry compendium
26.04.2018 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>