Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Journey Begins for NASA’s New Horizons Probe


New Horizons: Pluto/Charon
Artist’s concept of the New Horizons spacecraft during its planned encounter with Pluto and its moon, Charon. The craft’s miniature cameras, radio science experiment, ultraviolet and infrared spectrometers and space plasma experiments would characterize the global geology and geomorphology of Pluto and Charon, map their surface compositions and temperatures, and examine Pluto’s atmosphere in detail. The spacecraft’s most prominent design feature is a nearly 7-foot (2.1-meter) dish antenna, through which it would communicate with Earth from as far as 4.7 billion miles (7.5 billion kilometers) away. Credit: Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute (JHUAPL/SwRI)

APL-Built Pluto Mission Spacecraft Shipped to NASA Goddard for Pre-launch Tests

The first spacecraft designed to study Pluto, the solar system’s farthest planet, took the first steps on a long journey today when it was shipped from the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Md. — where it was designed and built — to NASA’s Goddard Space Flight Center in Greenbelt, Md., for its next round of pre-launch tests.

Proposed for launch in January 2006, the New Horizons spacecraft spent the past week in an APL vibration test lab, where engineers checked the structural integrity of the piano-sized probe aboard a large shake table. The table simulated the energetic ride New Horizons would encounter during liftoff aboard an Atlas V – one of the largest launch vehicles NASA uses.

“Our testing program is off to a good start,” says Glen Fountain, New Horizons project manager at APL. “We’ve shown that New Horizons is structurally ready for the ride on the launch vehicle, and now we’ll test it in the full range of conditions it would face on the voyage to Pluto, Pluto’s moon, Charon, and beyond.”

Over the next three months at Goddard the mission team will check New Horizons’ balance and alignment in a series of spin tests; put it before wall-sized speakers that simulate the noise-induced vibrations of launch; and seal it in a four-story thermal-vacuum chamber that duplicates the extreme hot, cold and airless conditions of space. This fall the team plans to transport New Horizons to Kennedy Space Center, Fla., for final launch preparations.

“The scientific community has put high priority on exploring the frontier that is the Pluto system and the Kuiper Belt beyond,” says Dr. Alan Stern, New Horizons principal investigator, from the Southwest Research Institute in Boulder, Colo. “With the move of New Horizons from APL to NASA’s Goddard Space Flight Center, we are closer to achieving this historic exploration.”

Pending completion of environmental reviews and launch approvals, the spacecraft would launch from Cape Canaveral Air Force Station, Fla., during a 35-day window that opens Jan. 11, 2006. The boost from the Atlas V and a STAR-48B kick motor would send the relatively light New Horizons on the fastest spacecraft trip ever to the outer solar system, reaching the moon’s orbit distance less than 9 hours after launch and zooming through the Jupiter system just 13 months later.

Jupiter’s gravity assist would put the 1,000-pound craft on course for a five-month-long flyby reconnaissance of Pluto-Charon in summer 2015, when the “double planet” would be about 3.1 billion miles from Earth. As part of an extended mission, the spacecraft could also head farther into the Kuiper Belt to examine one or two of the ancient, icy mini-worlds in the vast region at least a billion miles beyond Neptune’s orbit.

New Horizons is the first mission in NASA’s New Frontiers program of medium-class, high-priority solar system exploration projects, and the 62nd spacecraft built at APL. As principal investigator, Stern leads a mission team that includes APL, Ball Aerospace Corporation, the Boeing Company, NASA Goddard Space Flight Center, the Jet Propulsion Laboratory, Stanford University, KinetX, Inc., Lockheed Martin Corporation, University of Colorado, the U.S. Department of Energy and a number of other firms, NASA centers and university partners.

Michael Buckley | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>