Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn-Led Team to Look to Distant Galaxies with Balloon-Borne Telescope

13.06.2005


An international team of researchers, led by astronomers at the University of Pennsylvania, has launched the most highly sensitive telescope of its kind to be carried by balloon. The Balloon-borne Large Aperture Sub-millimeter Telescope or BLAST will take a five to nine-day journey along the upper reaches of Earth’s atmosphere. BLAST will collect images of objects in our solar system as well as the distant light that details the formation of stars and the evolution of whole galaxies.

The balloon launched on June 11th from the Swedish Space Corporation facility in Kiruna, Sweden and follow the atmospheric currents toward Canada where it will be recovered.

Suspended by a massive (37 million cubic foot) unmanned helium balloon, the BLAST will float 126,000 feet up, to the edge of space -- past the pollution and atmospheric conditions that hamper the abilities of even the best Earthbound telescopes. When fully inflated, the balloon would fill a football stadium.



"While BLAST won’t become a permanent fixture in the sky, balloon-based astronomy offers many of the perks of space-based telescopes at a fraction of the cost of actually putting a telescope in orbit and maintaining it," said Mark Devlin, principle investigator for the BLAST project and associate professor in Penn’s Department of Physics and Astronomy.

The telescope’s mirror measures two meters (6.5 feet) in diameter and will be capable of surveying a patch of sky about four times the size of the moon to look for faint stellar objects. The entire telescope weighs 2000 kilograms (about 4400 pounds).

On board, 260 detectors, about 20 times as many ever used on a balloon telescope flight, will convert photons from the observed objects into heat. A rise in temperature would thereby measure the number of photons from galaxies formed 5 to 12 billion years ago, when the universe was one-tenth its current age. The detectors will capture light at three separate wavelengths. By measuring the number of photons at each wavelength of light from an object, the astronomers could determine how far away the object is as well as its luminosity.

The goal of the project is to conduct a series of experiments to help accurately theories of the formation of stars within our own galaxy as well as the formation of other galaxies. Chief among those is a series of extra-galactic surveys to identify the distant galaxies responsible for producing the background levels of light and radiation that we see throughout the Universe. In addition, BLAST will survey the molecular clouds associated with the earliest stages of star formation. Closer to home, BLAST will observe features of our own Solar System including planets, and large asteroids.

"Not only are we collecting some unique and interesting information about the universe, but we are also pioneering technologies that will pave the way for other planned balloon projects," Devlin said. "Of course, once we have our data, the real hard part comes in figuring out what all this information means.

Along with Devlin, the Penn BLAST contingent is comprised of Ed Chapin, Simon Dicker, Jeff Klein, Marie Rex and Chris Semisch. In its entirety, the BLAST project is a collaboration between Penn researchers and colleagues at Brown University, the University of Toronto, the University of British Columbia, the University of Miami, the Jet Propulsion Laboratory, Cardiff University and the Instituto Nacional de Astrofisica of Mexico.

Support for the research was provided by NASA, the Canadian Space Agency and the United Kingdoms Particle Physics and Astronomy Research Council (PPARC).

Technical details about BLAST can be found online at: chile1.physics.upenn.edu/blastpublic/index.shtml.

Ongoing details about the launch can be found at the blog of University of British Colombia graduate student Gaelen Marsden and the blog of University of Toronto graduate student Don Weibe.

Global positioning system tracking of BLAST can be found at NASA’s National Scientific Balloon Facility’s website: >www.nsbf.nasa.gov/sweden/sweden05.htma>

Greg Lester | EurekAlert!
Further information:
http://www.physics.ubc.ca/~gmarsden/kiruna_2005
http://gimli.physics.utoronto.ca/Kiruna_2005
http://www.upenn.edu

More articles from Physics and Astronomy:

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>