Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pitt researchers see electron waves in motion for first time

13.06.2005


New imaging technique—a trillion times faster than conventional techniques—advances field of plasmonics, could lead to better semiconductors



Both the ancient art of stained glass and the cutting-edge field of plasmonics rely on the oscillation of electrons in nanosized metal particles. When light shines on such particles, it excites the electromagnetic fields on the metal’s surface, known as "surface plasmons," and causes its electrons to oscillate in waves--producing the rich hues of stained glass.

But because electrons move nearly as fast as light, those oscillations have been difficult to observe and had never before been seen in motion. Now, in a paper published in the current issue of the journal Nano Letters, Pitt researchers have demonstrated a microscopy technique that allows the movement of the plasmons to be seen for the first time, at a resolution a trillion times better than conventional techniques.


Hrvoje Petek, professor of physics and astronomy at Pitt, and Hong Koo Kim, Pitt professor of electrical and computer engineering, codirectors of Pitt’s Institute of NanoScience and Engineering, showed in their paper, "Femtosecond Imaging of Surface Plasmon Dynamics in a Nanostructured Silver Film," that it is indeed possible to achieve high-resolution imaging through a combination of ultra-fast laser and electron optic methods. Although theoretically possible, this technique had never been demonstrated in practice.

Petek and Kim used a pair of 10-femtosecond (one quadrillionth of a second) laser pulses to induce the emission of electrons from the sample, a nanostructured thin silver film. Scanning the pulse delay, they recorded a movie of surface plasmon fields at 330 attoseconds (quintillionths of a second) per frame. The video is available online at pubs.acs.org.

Their research is a boon to the emerging field of plasmonics. Currently, semiconductor chips each contain "about a mile" of wires, said Petek. When electrons carry electrical signals through such wires they collide about every 10 nanometers (10-8 m). In part, this causes problems because the chips give off too much heat. The solution may be to send the signal as plasmon waves, which would lead to faster chips and less dissipation of energy, Petek said.

Karen Hoffmann | EurekAlert!
Further information:
http://www.pitt.edu

More articles from Physics and Astronomy:

nachricht Taking a spin on plasma space tornadoes with NASA observations
20.11.2017 | NASA/Goddard Space Flight Center

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>