Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pitt researchers see electron waves in motion for first time

13.06.2005


New imaging technique—a trillion times faster than conventional techniques—advances field of plasmonics, could lead to better semiconductors



Both the ancient art of stained glass and the cutting-edge field of plasmonics rely on the oscillation of electrons in nanosized metal particles. When light shines on such particles, it excites the electromagnetic fields on the metal’s surface, known as "surface plasmons," and causes its electrons to oscillate in waves--producing the rich hues of stained glass.

But because electrons move nearly as fast as light, those oscillations have been difficult to observe and had never before been seen in motion. Now, in a paper published in the current issue of the journal Nano Letters, Pitt researchers have demonstrated a microscopy technique that allows the movement of the plasmons to be seen for the first time, at a resolution a trillion times better than conventional techniques.


Hrvoje Petek, professor of physics and astronomy at Pitt, and Hong Koo Kim, Pitt professor of electrical and computer engineering, codirectors of Pitt’s Institute of NanoScience and Engineering, showed in their paper, "Femtosecond Imaging of Surface Plasmon Dynamics in a Nanostructured Silver Film," that it is indeed possible to achieve high-resolution imaging through a combination of ultra-fast laser and electron optic methods. Although theoretically possible, this technique had never been demonstrated in practice.

Petek and Kim used a pair of 10-femtosecond (one quadrillionth of a second) laser pulses to induce the emission of electrons from the sample, a nanostructured thin silver film. Scanning the pulse delay, they recorded a movie of surface plasmon fields at 330 attoseconds (quintillionths of a second) per frame. The video is available online at pubs.acs.org.

Their research is a boon to the emerging field of plasmonics. Currently, semiconductor chips each contain "about a mile" of wires, said Petek. When electrons carry electrical signals through such wires they collide about every 10 nanometers (10-8 m). In part, this causes problems because the chips give off too much heat. The solution may be to send the signal as plasmon waves, which would lead to faster chips and less dissipation of energy, Petek said.

Karen Hoffmann | EurekAlert!
Further information:
http://www.pitt.edu

More articles from Physics and Astronomy:

nachricht Temperature-controlled fiber-optic light source with liquid core
20.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht New material for splitting water
19.06.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>