Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mobile holography and laser systems - caesar presents new technologies at the Laser 2005 in Munich


Experts in the field of optical technology meet biennially at the "Laser – World of Photonics" in Munich. The Bonn research center caesar is exhibiting again at this year’s fair which will take place from 13 to 16 June. The research group "Holography and Laser Technology" headed by Prof. Peter Hering is presenting its state-of-the-art developments in Hall B2, Stand 252: an ultrafast holographic system featuring a mobile camera used for three-dimensional facial topometry for surgical planning and documentation as well as a particularly gentle laser technology for processing non-metallic substances.

In holographic three-dimensional facial topometry, a patient portrait hologram is generated using a short-pulsed laser and subsequently digitized. Thus a three-dimensional computer model is provided which can be visualized on every computer. A so-called texture with high resolution is retrieved from topometric information visualizing even skin pores and small hairs. The monochrome texture imposed on the model produces an extremely lifelike image. With the aid of computer tomography data models are retrieved demonstrating facial bone structure as well as the soft tissue on top. These images provide new options in oral or maxillo-facial surgical planning and documentation to achieve optimal functional as well as aesthetic results.

At the "Laser 2005" a mobile holographic camera system will be presented to the public for the first time. The mobile camera is assembled within 20 minutes and easy to operate. The camera enables flexible use at various locations and has been subject to clinical testing. At the "Laser" premiere on Monday morning (June 13th) a special "patient" will undergo holography: a thoroughbred award-winning poodle. On the one hand the extremely high resolution of the system is demonstrated as individual hairs of the poodle are visualized on the hologram and on the other hand the extremely short recording time, which leads to models free of motion-artifacts despite movements of the poodle.

Furthermore, the research group is presenting a new laser technology method for processing non-metallic substances avoiding thermal damage. It is suitable for precise laser incision, drilling, ablation, structuring and engraving of various materials. These comprise: plastics (including sensitive thermoplastics) and rubber, synthetic fibers (Kevlar, carbon etc.), composites, ceramics, natural materials, cellulose-based materials as well as easily-distorted objects. The method enables rapid processing, high precision, non-contact cuttings featuring minimal thermal damage as well as a 3D processing option. Optical properties of transparent materials such as PMMA remain unaffected by incision. Components made from an extremely easily-distorted material can be manufactured at dimensional accuracy of 100 µm. The group adapts its technology for industrial clients to the material and processing project. Feasibility studies, process and system development as well as laser material processing services are provided.

Moreover, the laser system will serve as a high-precision bone cutting instrument in future, for example in neuro, cardio, oral and maxillo-facial surgery. It enables non-contact cutting of arbitrary geometries and three-dimensional ablation of bone and cartilage avoiding thermal damage, bone dust and metal abrasion, thus providing several benefits vis-à-vis conventional bone incision. Fine incisions of 0.2 mm width and up to 7 mm depth are generated in a compact bone. Even deeper incisions can be produced increasing the width of the cut. A mobile prototype of the device has been successfully tested in several animal trials. The prototype is intended for further development with clinical and industrial cooperation partners into a medical product for serial manufacture. Incision of various materials using the mobile prototype will be demonstrated at the "Laser".

Francis Hugenroth | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>