Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mobile holography and laser systems - caesar presents new technologies at the Laser 2005 in Munich

13.06.2005


Experts in the field of optical technology meet biennially at the "Laser – World of Photonics" in Munich. The Bonn research center caesar is exhibiting again at this year’s fair which will take place from 13 to 16 June. The research group "Holography and Laser Technology" headed by Prof. Peter Hering is presenting its state-of-the-art developments in Hall B2, Stand 252: an ultrafast holographic system featuring a mobile camera used for three-dimensional facial topometry for surgical planning and documentation as well as a particularly gentle laser technology for processing non-metallic substances.



In holographic three-dimensional facial topometry, a patient portrait hologram is generated using a short-pulsed laser and subsequently digitized. Thus a three-dimensional computer model is provided which can be visualized on every computer. A so-called texture with high resolution is retrieved from topometric information visualizing even skin pores and small hairs. The monochrome texture imposed on the model produces an extremely lifelike image. With the aid of computer tomography data models are retrieved demonstrating facial bone structure as well as the soft tissue on top. These images provide new options in oral or maxillo-facial surgical planning and documentation to achieve optimal functional as well as aesthetic results.

At the "Laser 2005" a mobile holographic camera system will be presented to the public for the first time. The mobile camera is assembled within 20 minutes and easy to operate. The camera enables flexible use at various locations and has been subject to clinical testing. At the "Laser" premiere on Monday morning (June 13th) a special "patient" will undergo holography: a thoroughbred award-winning poodle. On the one hand the extremely high resolution of the system is demonstrated as individual hairs of the poodle are visualized on the hologram and on the other hand the extremely short recording time, which leads to models free of motion-artifacts despite movements of the poodle.


Furthermore, the research group is presenting a new laser technology method for processing non-metallic substances avoiding thermal damage. It is suitable for precise laser incision, drilling, ablation, structuring and engraving of various materials. These comprise: plastics (including sensitive thermoplastics) and rubber, synthetic fibers (Kevlar, carbon etc.), composites, ceramics, natural materials, cellulose-based materials as well as easily-distorted objects. The method enables rapid processing, high precision, non-contact cuttings featuring minimal thermal damage as well as a 3D processing option. Optical properties of transparent materials such as PMMA remain unaffected by incision. Components made from an extremely easily-distorted material can be manufactured at dimensional accuracy of 100 µm. The group adapts its technology for industrial clients to the material and processing project. Feasibility studies, process and system development as well as laser material processing services are provided.

Moreover, the laser system will serve as a high-precision bone cutting instrument in future, for example in neuro, cardio, oral and maxillo-facial surgery. It enables non-contact cutting of arbitrary geometries and three-dimensional ablation of bone and cartilage avoiding thermal damage, bone dust and metal abrasion, thus providing several benefits vis-à-vis conventional bone incision. Fine incisions of 0.2 mm width and up to 7 mm depth are generated in a compact bone. Even deeper incisions can be produced increasing the width of the cut. A mobile prototype of the device has been successfully tested in several animal trials. The prototype is intended for further development with clinical and industrial cooperation partners into a medical product for serial manufacture. Incision of various materials using the mobile prototype will be demonstrated at the "Laser".

Francis Hugenroth | alfa
Further information:
http://www.caesar.de

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>