Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mobile holography and laser systems - caesar presents new technologies at the Laser 2005 in Munich

13.06.2005


Experts in the field of optical technology meet biennially at the "Laser – World of Photonics" in Munich. The Bonn research center caesar is exhibiting again at this year’s fair which will take place from 13 to 16 June. The research group "Holography and Laser Technology" headed by Prof. Peter Hering is presenting its state-of-the-art developments in Hall B2, Stand 252: an ultrafast holographic system featuring a mobile camera used for three-dimensional facial topometry for surgical planning and documentation as well as a particularly gentle laser technology for processing non-metallic substances.



In holographic three-dimensional facial topometry, a patient portrait hologram is generated using a short-pulsed laser and subsequently digitized. Thus a three-dimensional computer model is provided which can be visualized on every computer. A so-called texture with high resolution is retrieved from topometric information visualizing even skin pores and small hairs. The monochrome texture imposed on the model produces an extremely lifelike image. With the aid of computer tomography data models are retrieved demonstrating facial bone structure as well as the soft tissue on top. These images provide new options in oral or maxillo-facial surgical planning and documentation to achieve optimal functional as well as aesthetic results.

At the "Laser 2005" a mobile holographic camera system will be presented to the public for the first time. The mobile camera is assembled within 20 minutes and easy to operate. The camera enables flexible use at various locations and has been subject to clinical testing. At the "Laser" premiere on Monday morning (June 13th) a special "patient" will undergo holography: a thoroughbred award-winning poodle. On the one hand the extremely high resolution of the system is demonstrated as individual hairs of the poodle are visualized on the hologram and on the other hand the extremely short recording time, which leads to models free of motion-artifacts despite movements of the poodle.


Furthermore, the research group is presenting a new laser technology method for processing non-metallic substances avoiding thermal damage. It is suitable for precise laser incision, drilling, ablation, structuring and engraving of various materials. These comprise: plastics (including sensitive thermoplastics) and rubber, synthetic fibers (Kevlar, carbon etc.), composites, ceramics, natural materials, cellulose-based materials as well as easily-distorted objects. The method enables rapid processing, high precision, non-contact cuttings featuring minimal thermal damage as well as a 3D processing option. Optical properties of transparent materials such as PMMA remain unaffected by incision. Components made from an extremely easily-distorted material can be manufactured at dimensional accuracy of 100 µm. The group adapts its technology for industrial clients to the material and processing project. Feasibility studies, process and system development as well as laser material processing services are provided.

Moreover, the laser system will serve as a high-precision bone cutting instrument in future, for example in neuro, cardio, oral and maxillo-facial surgery. It enables non-contact cutting of arbitrary geometries and three-dimensional ablation of bone and cartilage avoiding thermal damage, bone dust and metal abrasion, thus providing several benefits vis-à-vis conventional bone incision. Fine incisions of 0.2 mm width and up to 7 mm depth are generated in a compact bone. Even deeper incisions can be produced increasing the width of the cut. A mobile prototype of the device has been successfully tested in several animal trials. The prototype is intended for further development with clinical and industrial cooperation partners into a medical product for serial manufacture. Incision of various materials using the mobile prototype will be demonstrated at the "Laser".

Francis Hugenroth | alfa
Further information:
http://www.caesar.de

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

SF State astronomer searches for signs of life on Wolf 1061 exoplanet

20.01.2017 | Physics and Astronomy

Treated carbon pulls radioactive elements from water

20.01.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>