Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultra-fast Movies of the Sky

10.06.2005


Astronomers Commission New High-Speed Camera on the Very Large Telescope



British scientists have opened a new window on the Universe with the recent commissioning of ULTRACAM on the European Southern Observatory’s (ESO) Very Large Telescope (VLT) in Chile.

ULTRACAM is an ultra fast camera capable of capturing some of the most rapid astronomical events. It can take up to 500 pictures a second in three different colours simultaneously. It has been designed and built by scientists from the Universities of Sheffield and Warwick (United Kingdom), in collaboration with the UK Astronomy Technology Centre in Edinburgh.


ULTRACAM employs the latest in charged coupled device (CCD) detector technology in order to take, store and analyse data at the required sensitivities and speeds. CCD detectors can be found in digital cameras and camcorders, but the devices used in ULTRACAM are special because they are larger, faster and most importantly, much more sensitive to light than the detectors used in today’s consumer electronics products.

In May 2002, the instrument saw "first light" on the 4.2-m William Herschel Telescope (WHT) on La Palma. Since then the instrument has been awarded a total of 75 nights of time on the WHT to study any object in the Universe which eclipses, transits, occults, flickers, flares, pulsates, oscillates, outbursts or explodes.

These observations have produced a bonanza of new and exciting results, leading to already 11 scientific publications published or in press.

To study the very faintest stars at the very highest speeds, however, it is necessary to use the largest telescopes. Thus, work began 2 years ago preparing ULTRACAM for use on the VLT.

"Astronomers using the VLT now have an instrument specifically designed for the study of high-speed phenomena", said Vik Dhillon, from the University of Sheffield (UK) and the ULTRACAM project scientist. "Using ULTRACAM in conjunction with the current generation of large telescopes makes it now possible to study high-speed celestial phenomena such as eclipses, oscillations and occultations in stars which are millions of times too faint to see with the unaided eye."

Observing Black Holes

The instrument saw first light on the VLT on May 4, 2005, and was then used for 17 consecutive nights on the telescope to study extrasolar planets, black-hole binary systems, pulsars, white dwarfs, asteroseismology, cataclysmic variables, brown dwarfs, gamma-ray bursts, active-galactic nuclei and Kuiper-belt objects.

One of the faint objects studied with ULTRACAM on the VLT is GU Muscae. This object consists of a black hole in a 10-hour orbit with a normal, solar-like star. The black hole is surrounded by a disc of material transferred from the normal star. As this material falls onto the black hole, energy is released, producing large-amplitude flares visible in the light curve. This object has magnitude 21.4, that is, it is one million times fainter than what can be seen with the unaided eye. Yet, to study it in detail and detect the shortest possible pulses, it is necessary to use exposure times as short as 5 seconds. This is possible with the large aperture and great efficiency of the VLT.

These unique observations have revealed a series of sharp spikes, separated by approximately 7 minutes. Such a stable signal must be tied to a relatively stable structure in the disc of matter surrounding the black hole. The astronomers are now in the process of analysing these results in great details in order to understand the origin of this structure.

Another series of observations were dedicated to the study of extrasolar planets, more particularly those that transit in front of their host star. ULTRACAM observations have allowed the astronomers to obtain simultaneous light curves, in several colour-bands, of four known transiting exoplanets discovered by the OGLE survey, and this with a precision of a tenth of a percent and with a 4 second time resolution. This is a factor ten better than previous measurements and will provide very accurate masses and radii for these so-called "hot-Jupiters". Because ULTRACAM makes observations in three different wavebands, such observations will also allow astronomers to establish whether the radius of the exoplanet is different at different wavelengths. This could provide crucial information on the possible exoplanets’ atmosphere.

The camera is the first instrument to make use of the Visitor Focus on Melipal (UT3), and the first UK-built instrument to be mounted at the VLT. The Visitor Focus allows innovative technologies and instrumentation to be added to the telescope for short periods of time, permitting studies to take place that are not available with the current suite of instruments.

"These few nights with ULTRACAM on the VLT have demonstrated the unique discoveries that can be made by combining an innovative technology with one of the best astronomical facilities in the world," said Tom Marsh of the University of Warwick and member of the team. "We hope that ULTRACAM will now become a regular visitor at the VLT, giving European astronomers access to a unique new tool with which to study the Universe."

Henri Boffin | alfa
Further information:
http://www.eso.org/outreach/press-rel/pr-2005/pr-17-05.html

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>