Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultra-fast Movies of the Sky

10.06.2005


Astronomers Commission New High-Speed Camera on the Very Large Telescope



British scientists have opened a new window on the Universe with the recent commissioning of ULTRACAM on the European Southern Observatory’s (ESO) Very Large Telescope (VLT) in Chile.

ULTRACAM is an ultra fast camera capable of capturing some of the most rapid astronomical events. It can take up to 500 pictures a second in three different colours simultaneously. It has been designed and built by scientists from the Universities of Sheffield and Warwick (United Kingdom), in collaboration with the UK Astronomy Technology Centre in Edinburgh.


ULTRACAM employs the latest in charged coupled device (CCD) detector technology in order to take, store and analyse data at the required sensitivities and speeds. CCD detectors can be found in digital cameras and camcorders, but the devices used in ULTRACAM are special because they are larger, faster and most importantly, much more sensitive to light than the detectors used in today’s consumer electronics products.

In May 2002, the instrument saw "first light" on the 4.2-m William Herschel Telescope (WHT) on La Palma. Since then the instrument has been awarded a total of 75 nights of time on the WHT to study any object in the Universe which eclipses, transits, occults, flickers, flares, pulsates, oscillates, outbursts or explodes.

These observations have produced a bonanza of new and exciting results, leading to already 11 scientific publications published or in press.

To study the very faintest stars at the very highest speeds, however, it is necessary to use the largest telescopes. Thus, work began 2 years ago preparing ULTRACAM for use on the VLT.

"Astronomers using the VLT now have an instrument specifically designed for the study of high-speed phenomena", said Vik Dhillon, from the University of Sheffield (UK) and the ULTRACAM project scientist. "Using ULTRACAM in conjunction with the current generation of large telescopes makes it now possible to study high-speed celestial phenomena such as eclipses, oscillations and occultations in stars which are millions of times too faint to see with the unaided eye."

Observing Black Holes

The instrument saw first light on the VLT on May 4, 2005, and was then used for 17 consecutive nights on the telescope to study extrasolar planets, black-hole binary systems, pulsars, white dwarfs, asteroseismology, cataclysmic variables, brown dwarfs, gamma-ray bursts, active-galactic nuclei and Kuiper-belt objects.

One of the faint objects studied with ULTRACAM on the VLT is GU Muscae. This object consists of a black hole in a 10-hour orbit with a normal, solar-like star. The black hole is surrounded by a disc of material transferred from the normal star. As this material falls onto the black hole, energy is released, producing large-amplitude flares visible in the light curve. This object has magnitude 21.4, that is, it is one million times fainter than what can be seen with the unaided eye. Yet, to study it in detail and detect the shortest possible pulses, it is necessary to use exposure times as short as 5 seconds. This is possible with the large aperture and great efficiency of the VLT.

These unique observations have revealed a series of sharp spikes, separated by approximately 7 minutes. Such a stable signal must be tied to a relatively stable structure in the disc of matter surrounding the black hole. The astronomers are now in the process of analysing these results in great details in order to understand the origin of this structure.

Another series of observations were dedicated to the study of extrasolar planets, more particularly those that transit in front of their host star. ULTRACAM observations have allowed the astronomers to obtain simultaneous light curves, in several colour-bands, of four known transiting exoplanets discovered by the OGLE survey, and this with a precision of a tenth of a percent and with a 4 second time resolution. This is a factor ten better than previous measurements and will provide very accurate masses and radii for these so-called "hot-Jupiters". Because ULTRACAM makes observations in three different wavebands, such observations will also allow astronomers to establish whether the radius of the exoplanet is different at different wavelengths. This could provide crucial information on the possible exoplanets’ atmosphere.

The camera is the first instrument to make use of the Visitor Focus on Melipal (UT3), and the first UK-built instrument to be mounted at the VLT. The Visitor Focus allows innovative technologies and instrumentation to be added to the telescope for short periods of time, permitting studies to take place that are not available with the current suite of instruments.

"These few nights with ULTRACAM on the VLT have demonstrated the unique discoveries that can be made by combining an innovative technology with one of the best astronomical facilities in the world," said Tom Marsh of the University of Warwick and member of the team. "We hope that ULTRACAM will now become a regular visitor at the VLT, giving European astronomers access to a unique new tool with which to study the Universe."

Henri Boffin | alfa
Further information:
http://www.eso.org/outreach/press-rel/pr-2005/pr-17-05.html

More articles from Physics and Astronomy:

nachricht Water without windows: Capturing water vapor inside an electron microscope
13.12.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Columbia engineers create artificial graphene in a nanofabricated semiconductor structure
13.12.2017 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>