Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Titan’s volcano may release methane


A team of European and US scientists, using Cassini-Huygens data, have found that Saturn’s smoggy moon Titan may have volcanoes that release methane in the atmosphere.

Possible volcanic dome on Titan ocean

These findings may lead scientists to revise the theories that the presence of methane in Titan’s atmosphere is mainly due to the presence of a methane-rich hydrocarbon ocean.

Infrared images taken by the Visual and Infrared Mapping Spectrometer (VIMS) on board the Cassini orbiter, show a bright, 30-kilometre-wide structure. This structure, imaged during the first Titan fly-by on 26 October 2004 from a distance of 1200 kilometres, could be interpreted as a volcanic dome formed by upwelling plumes of icy material that rose to the planet’s surface. While melting, the icy material contaminated by hydrocarbons would release methane gas.

The eruptions of such an ice-volcano, or ‘cryo-volcano’, would be caused by the heat generated during tidal movements of material inside Titan. Internal tides at Titan are expected as this moon strongly varies its distance from Saturn while it runs along its highly elliptical orbit around the mother planet.

The images of the observed area also show that liquid is not visible on the surface. This conclusion is reinforced by the comparison of surface features imaged by VIMS with similar features imaged by ESA’s Huygens probe during its descent and eventual landing onto Titan’s soil.

"Before Cassini-Huygens, the most widely accepted explanation for the presence of methane in Titan’s atmosphere was the presence of a methane-rich hydrocarbon ocean," said Dr. Christophe Sotin, from the University of Nantes (France) and lead author of the results. "The suite of instruments on-board Cassini and the observations at the Huygens landing site reveal that a global ocean is not present. Interpreting this feature as a ‘cryo-volcano’ provides an alternative explanation for the presence of methane in Titan’s atmosphere", he added.

An infrared instrument like VIMS is able to peer through Titan’s dense haze and provide information about the chemical composition and the topography of the surface.

The highest resolution image obtained covers an area 150 square kilometres that includes the bright 30-kilometre circular feature, with two elongated wings extending westward. This structure actually resembles volcanic structures on Earth and Venus, with overlapping layers of material from a series of flows, although the volcanic material is different.

In the centre of the area, scientists clearly see a dark feature that can be interpreted as a depression. So, it is easy to imagine it as a volcanic caldera, a bowl-shaped structure formed above chambers of molten material.

If the cryo-volcanism hypothesis is true, the black channels seen by Huygens during its descent could have been formed by the large release of methane-rich rains following the eruptions.

Scientists have already considered, and ruled out, other interpretations for the 30-kilometre circular structure. In principle, it could be a cloud, but images taken at different times show that the structure does not vary its shape. A second interpretation would suggest that the structure is an accumulation of solid particles transported by gas or liquid, as it happens for sand dunes on Earth. However, a circular shape does not really match with this process, and its possible wind patterns do not match with the expected wind directions on Titan.

Radar observations of the same regions to be made later by Cassini will certainly help to confirm these findings.

Jean-Pierre Lebreton | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>