Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Device Could Shorten Drug Development

08.06.2005


The sequencing of the human genome was only the beginning of a much more complex task – deciphering the secrets of cellular chemistry and the mechanisms of disease. While the genome serves as a blueprint to understanding the body, proteins represent the materials that carry out these plans.



There are about 2 million distinct proteins in the human body. That’s a lot of proteins – and the future of personalized medicine depends on a better understanding of proteins, including their structure and interactions with drugs and medical devices.

Researchers at the Georgia Institute of Technology have developed a device that has the potential to significantly reduce the time needed to analyze these important proteins, shortening development time for new drugs and bringing down the overall cost of protein analysis technology. According to findings published in Applied Physics Letters, the device can potentially analyze proteins much faster, more gently and at a lower cost.


“The device has the potential to completely change the landscape of this field,” said Andrei Fedorov, an associate professor in the Woodruff School of Mechanical Engineering at Georgia Tech who leads the project. Fedorov’s collaborators on the project include Professor F.L. Degertekin from the Woodruff School of Mechanical Engineering and Professor F.M. Fernandez from the School of Chemistry and Biochemistry.

The device is a critical component of a mass spectrometer, an instrument that can detect proteins present even in ultra-small concentrations by measuring the relative masses of ionized atoms and molecules. Mass spectrometers can provide a complete protein profile and essentially make proteomics, the study of how proteins are produced and interact within an organ, cell or tissue, possible.

“You need to be able to take a blood sample, pass it through a system and figure out the complete protein profile of the human plasma. It’s an extremely technology-intensive process and you need to have a technology to do this kind of testing quickly and inexpensively,” Fedorov said.

But before the mass spectrometer can analyze a sample, molecules must first be converted to gas-phase charged ions through electrospray ionization (ESI), a process that produces ions by evaporating charged droplets obtained through spraying or bubbling.

Georgia Tech’s AMUSE (Array of Micromachined Ultra Sonic Electrospray) technology has several key advantages over currently available electrospray methods. In AMUSE, the sample aerosolization and protein charging processes are separated, giving AMUSE the unique ability to operate at low voltages with a wide range of solvents. In addition, AMUSE is a nanoscale ion source and drastically lowers the required sample size by improving sample use.

Also important, AMUSE is a “high-throughput” microarray device, meaning that it can analyze many more samples at a time than a conventional electrospray device.

This innovation will be particularly useful for the pharmaceutical industry. Drugs target certain proteins to achieve their designed effect on the body. The pharmaceutical industry must test large numbers compounds on even larger numbers of proteins to determine what effect a substance has on the body and whether or not it is safe. With AMUSE, the time-consuming process could be streamlined considerably, which could significantly shorten drug development time.

In addition to its ability to handle a much higher number of samples, AMUSE can also be manufactured more cheaply than current ESI devices. Conventional electrospray devices in mass spectrometers generally cost around $150 a piece and must be cleaned after each sample is analyzed. AMUSE could be made disposable and mass produced at a few dollars a piece, making Georgia Tech’s device a key step toward more affordable mass spectrometers for clinical applications.

For example, to determine whether a patient has cancer, a small blood sample is typically frozen and sent out to a testing lab at another facility. This freezing process and trip to the lab have a significant impact, damaging the proteins and possibly giving an incomplete analysis. In the future, with a powerful and portable mass spectrometer, it may be possible for a doctor to take a sample directly from the patient, place it in the device and receive an analysis on the spot.

The Georgia Institute of Technology is one of the nation’s premiere research universities. Ranked among U.S. News & World Report’s top 10 public universities, Georgia Tech educates more than 16,000 students every year through its Colleges of Architecture, Computing, Engineering, Liberal Arts, Management and Sciences. Tech maintains a diverse campus and is among the nation’s top producers of women and African-American engineers. The Institute offers research opportunities to both undergraduate and graduate students and is home to more than 100 interdisciplinary units plus the Georgia Tech Research Institute. During the 2003-2004 academic year, Georgia Tech reached $341.9 million in new research award funding.

Megan McRainey | EurekAlert!
Further information:
http://www.gatech.edu
http://www.icpa.gatech.edu

More articles from Physics and Astronomy:

nachricht Four elements make 2-D optical platform
26.09.2017 | Rice University

nachricht The material that obscures supermassive black holes
26.09.2017 | Instituto de Astrofísica de Canarias (IAC)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>