Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Device Could Shorten Drug Development

08.06.2005


The sequencing of the human genome was only the beginning of a much more complex task – deciphering the secrets of cellular chemistry and the mechanisms of disease. While the genome serves as a blueprint to understanding the body, proteins represent the materials that carry out these plans.



There are about 2 million distinct proteins in the human body. That’s a lot of proteins – and the future of personalized medicine depends on a better understanding of proteins, including their structure and interactions with drugs and medical devices.

Researchers at the Georgia Institute of Technology have developed a device that has the potential to significantly reduce the time needed to analyze these important proteins, shortening development time for new drugs and bringing down the overall cost of protein analysis technology. According to findings published in Applied Physics Letters, the device can potentially analyze proteins much faster, more gently and at a lower cost.


“The device has the potential to completely change the landscape of this field,” said Andrei Fedorov, an associate professor in the Woodruff School of Mechanical Engineering at Georgia Tech who leads the project. Fedorov’s collaborators on the project include Professor F.L. Degertekin from the Woodruff School of Mechanical Engineering and Professor F.M. Fernandez from the School of Chemistry and Biochemistry.

The device is a critical component of a mass spectrometer, an instrument that can detect proteins present even in ultra-small concentrations by measuring the relative masses of ionized atoms and molecules. Mass spectrometers can provide a complete protein profile and essentially make proteomics, the study of how proteins are produced and interact within an organ, cell or tissue, possible.

“You need to be able to take a blood sample, pass it through a system and figure out the complete protein profile of the human plasma. It’s an extremely technology-intensive process and you need to have a technology to do this kind of testing quickly and inexpensively,” Fedorov said.

But before the mass spectrometer can analyze a sample, molecules must first be converted to gas-phase charged ions through electrospray ionization (ESI), a process that produces ions by evaporating charged droplets obtained through spraying or bubbling.

Georgia Tech’s AMUSE (Array of Micromachined Ultra Sonic Electrospray) technology has several key advantages over currently available electrospray methods. In AMUSE, the sample aerosolization and protein charging processes are separated, giving AMUSE the unique ability to operate at low voltages with a wide range of solvents. In addition, AMUSE is a nanoscale ion source and drastically lowers the required sample size by improving sample use.

Also important, AMUSE is a “high-throughput” microarray device, meaning that it can analyze many more samples at a time than a conventional electrospray device.

This innovation will be particularly useful for the pharmaceutical industry. Drugs target certain proteins to achieve their designed effect on the body. The pharmaceutical industry must test large numbers compounds on even larger numbers of proteins to determine what effect a substance has on the body and whether or not it is safe. With AMUSE, the time-consuming process could be streamlined considerably, which could significantly shorten drug development time.

In addition to its ability to handle a much higher number of samples, AMUSE can also be manufactured more cheaply than current ESI devices. Conventional electrospray devices in mass spectrometers generally cost around $150 a piece and must be cleaned after each sample is analyzed. AMUSE could be made disposable and mass produced at a few dollars a piece, making Georgia Tech’s device a key step toward more affordable mass spectrometers for clinical applications.

For example, to determine whether a patient has cancer, a small blood sample is typically frozen and sent out to a testing lab at another facility. This freezing process and trip to the lab have a significant impact, damaging the proteins and possibly giving an incomplete analysis. In the future, with a powerful and portable mass spectrometer, it may be possible for a doctor to take a sample directly from the patient, place it in the device and receive an analysis on the spot.

The Georgia Institute of Technology is one of the nation’s premiere research universities. Ranked among U.S. News & World Report’s top 10 public universities, Georgia Tech educates more than 16,000 students every year through its Colleges of Architecture, Computing, Engineering, Liberal Arts, Management and Sciences. Tech maintains a diverse campus and is among the nation’s top producers of women and African-American engineers. The Institute offers research opportunities to both undergraduate and graduate students and is home to more than 100 interdisciplinary units plus the Georgia Tech Research Institute. During the 2003-2004 academic year, Georgia Tech reached $341.9 million in new research award funding.

Megan McRainey | EurekAlert!
Further information:
http://www.gatech.edu
http://www.icpa.gatech.edu

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>