Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unlocking the mystery behind lightning’s puzzling friend

07.06.2005


Giant red blobs, picket fences, upward branching carrots, and tentacled octopi --- these are just a few of the phrases used to describe sprites --- spectacular, eerie flashes of colored light high above the tops of powerful thunderstorms that can travel up to 50 miles high in the atmosphere.



Most researchers have long supported the theory that sprites are linked to major lightning charges. Still, some scientists believe that conditions high in the atmosphere, like meteoritic dust particles or gravity waves might also induce sprite formation.

Now, a study led by Steven Cummer of Duke University, Durham, N.C. and Walter Lyons of FMA Research, Inc., Fort Collins, Colo. has found more evidence that sprites are generated by major lightning strikes. They also found the total charge, as it moves from the cloud to the ground, and multiplied by that distance, known as the "lightning charge moment," is most critical in the sprite’’s development. The study appeared in the April 2005 issue of Journal of Geophysical Research---Space Physics.


During the summer of 2000, researchers from across the nation participated in the Severe Thunderstorm Electrification and Precipitation Study. While the primary goal was to study severe thunderstorms and their link to heavy rain and hail, scientists also gathered important data on lightning’s role in triggering events above thunderclouds, like sprites.

Armed with the aid of sophisticated instruments and sensors, Cummer collected information from three thunderstorm outbreaks across the central U.S. and compared the "lightning charge moment" in both sprite and non---sprite producing lightning.

"The idea was that if other factors contributed to lowering the electric field threshold for sprite initiation, they would probably not always be present and we would find that sprites occasionally form after just modest lightning strokes," said Cummer.

Simulations created with the help of NASA computer animations and other data showed that weak lightning strikes do not create sprites. They also found factors other than the cloud---to---ground charge transfer are generally not important ingredients in sprite development.

Sprites, not formally identified until 1989 when the Space Shuttle (STS---34) recorded flashes as it passed over a thunderstorm in northern Australia, are largely unpredictable and brief --- lasting only 3 to 10 milliseconds and inherently difficult to study. But, the technique used in this study also proved that "a single sensor can monitor moment change in lightning strikes over a very large area, providing a reasonable way of estimating how often sprites occur globally," said Cummer. Much research to date has instead relied on the strategic placement of multiple low light video cameras.

Lightning’s other cousins, including elves that bring a millisecond flash of light that fills the entire night sky within a 100 kilometer (62 mile) radius of the associated lightning strike --- are generating much interest because of their strong electric fields and electromagnetic pulses that may interact with the Earth’s ionosphere and magnetosphere.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov/vision/earth/environment/sprites.html
http://www.gsfc.nasa.gov

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>