Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Astronomers find key evidence supporting theory of quasars


The office that astronomer Lei Hao shares with her fellow research associates on the first floor of the Space Sciences Building at Cornell University is tidy and organized. But Hao has been thinking a lot lately about dust.

Actually, she’s recently found a great deal of it. And she’s thrilled.

The dust in question is between 0.88 billion and 2.4 billion light years away from Hao’s office, in galaxies scientists classify as active galactic nuclei (AGNs). By confirming that the dust exists, Hao and her team of researchers from Cornell and several other institutions have given new weight to a popular, but not universally accepted, theory of AGNs. Their new evidence is published in the June 1 issue of Astrophysical Journal Letters (Vol. 625, pp. L75-L78).

Since the early 1980s, the most widely accepted model of AGNs, called the unified theory, involves a basic structure: a black hole at the center, an accretion disc (a round, flat sheet of gas) around it and a doughnut-shaped ring of dusty gas, called a torus, around the accretion disc. Jets of matter are propelled out from the center perpendicular to the plane of the accretion disc.

The model holds that all AGNs share the same fundamental characteristics, but it allows for different radiation patterns with the premise that how an AGN looks depends on the perspective of the observer. An AGN viewed face-on, classified as type 1, will show features from its central region; an AGN viewed from the side (type 2) will have those features obscured by the dusty torus. AGNs include quasars, which look like stars in optical telescopes but emit massive amounts of radiation; Seyfert galaxies, low-energy counterparts of quasars; and blazars, which are AGNs viewed pole-on and which show rapid variations in radiation output over short intervals.

From an observational standpoint, the model has been largely successful. But for years, a key piece of evidence has been missing.

Astronomers can determine the composition and temperature of extragalactic material by analyzing the way radiation passing through it is distributed along an infrared spectrum. When radiation passes through silicate dust (a fine, sandy substance common in interstellar dust), the dust grains absorb it at specific wavelengths and leave dips in the infrared spectrum around 10 and 18 microns.

When scientists observe type 2 AGNs, they recognize the silicate component of the dusty torus by the telltale 10- and 18-micron absorption dips. But in order for the unified theory to be correct, scientists looking down from the top or up from below a type 1 AGN would expect to see excess radiation from the silicate dust at 10 and 18 microns. They didn’t -- and that inconsistency led some to wonder if the theory was flawed.

Hao’s observations of silicate emission bands from type 1 AGNs are likely to quell those doubts.

In their paper, Hao and her colleagues describe five quasars (type 1 AGNs) for which clear bumps in infrared emissions have been discovered at 10 and 18 microns. The measurements were taken by the Spitzer Space Telescope’s infrared spectrograph, which was developed by Cornell professor of astronomy James Houck and is one of three instruments on the orbiting space telescope.

"People have been expecting this feature for a long time," says Hao. And it has always been there, she adds, but nobody had recognized it until now -- partly because the Spitzer’s technology is more sensitive than earlier versions and partly because other instruments didn’t include a wide enough spectral range to catch the 10 and 18 micron features.

Finding evidence of dust may not seem important to non-astronomer types, Hao allows. But she’s not letting that dampen her enthusiasm. "For us it’s quite dramatic," she says. And by comparing the two emission bumps, scientists can begin to learn even more about the AGNs. "The relative ratio between the two features can give some information on the inner temperature of the dusty torus," she says. Those calculations are just preliminary, but finding long-sought evidence of the dust in the first place is enough to make Hao grin. "You can see," she says, "that we verified the unification model."

Co-authors of the paper are Henrik Spoon, Gregory C. Sloan, J.A. Marshall, Daniel Weedman, Vassilis Charmandaris and James Houck of Cornell; L. Armus of the California Institute of Technology; A.G.G.M. Tielens of the Netherlands’ SRON National Institute for Space Research and Kapteyn Institute; Benjamin A. Sargent of the University of Rochester; and Ilse M. van Bemmel of Baltimore’s Space Telescope Institute.

Lauren Gold | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>