Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers find key evidence supporting theory of quasars

07.06.2005


The office that astronomer Lei Hao shares with her fellow research associates on the first floor of the Space Sciences Building at Cornell University is tidy and organized. But Hao has been thinking a lot lately about dust.



Actually, she’s recently found a great deal of it. And she’s thrilled.

The dust in question is between 0.88 billion and 2.4 billion light years away from Hao’s office, in galaxies scientists classify as active galactic nuclei (AGNs). By confirming that the dust exists, Hao and her team of researchers from Cornell and several other institutions have given new weight to a popular, but not universally accepted, theory of AGNs. Their new evidence is published in the June 1 issue of Astrophysical Journal Letters (Vol. 625, pp. L75-L78).


Since the early 1980s, the most widely accepted model of AGNs, called the unified theory, involves a basic structure: a black hole at the center, an accretion disc (a round, flat sheet of gas) around it and a doughnut-shaped ring of dusty gas, called a torus, around the accretion disc. Jets of matter are propelled out from the center perpendicular to the plane of the accretion disc.

The model holds that all AGNs share the same fundamental characteristics, but it allows for different radiation patterns with the premise that how an AGN looks depends on the perspective of the observer. An AGN viewed face-on, classified as type 1, will show features from its central region; an AGN viewed from the side (type 2) will have those features obscured by the dusty torus. AGNs include quasars, which look like stars in optical telescopes but emit massive amounts of radiation; Seyfert galaxies, low-energy counterparts of quasars; and blazars, which are AGNs viewed pole-on and which show rapid variations in radiation output over short intervals.

From an observational standpoint, the model has been largely successful. But for years, a key piece of evidence has been missing.

Astronomers can determine the composition and temperature of extragalactic material by analyzing the way radiation passing through it is distributed along an infrared spectrum. When radiation passes through silicate dust (a fine, sandy substance common in interstellar dust), the dust grains absorb it at specific wavelengths and leave dips in the infrared spectrum around 10 and 18 microns.

When scientists observe type 2 AGNs, they recognize the silicate component of the dusty torus by the telltale 10- and 18-micron absorption dips. But in order for the unified theory to be correct, scientists looking down from the top or up from below a type 1 AGN would expect to see excess radiation from the silicate dust at 10 and 18 microns. They didn’t -- and that inconsistency led some to wonder if the theory was flawed.

Hao’s observations of silicate emission bands from type 1 AGNs are likely to quell those doubts.

In their paper, Hao and her colleagues describe five quasars (type 1 AGNs) for which clear bumps in infrared emissions have been discovered at 10 and 18 microns. The measurements were taken by the Spitzer Space Telescope’s infrared spectrograph, which was developed by Cornell professor of astronomy James Houck and is one of three instruments on the orbiting space telescope.

"People have been expecting this feature for a long time," says Hao. And it has always been there, she adds, but nobody had recognized it until now -- partly because the Spitzer’s technology is more sensitive than earlier versions and partly because other instruments didn’t include a wide enough spectral range to catch the 10 and 18 micron features.

Finding evidence of dust may not seem important to non-astronomer types, Hao allows. But she’s not letting that dampen her enthusiasm. "For us it’s quite dramatic," she says. And by comparing the two emission bumps, scientists can begin to learn even more about the AGNs. "The relative ratio between the two features can give some information on the inner temperature of the dusty torus," she says. Those calculations are just preliminary, but finding long-sought evidence of the dust in the first place is enough to make Hao grin. "You can see," she says, "that we verified the unification model."

Co-authors of the paper are Henrik Spoon, Gregory C. Sloan, J.A. Marshall, Daniel Weedman, Vassilis Charmandaris and James Houck of Cornell; L. Armus of the California Institute of Technology; A.G.G.M. Tielens of the Netherlands’ SRON National Institute for Space Research and Kapteyn Institute; Benjamin A. Sargent of the University of Rochester; and Ilse M. van Bemmel of Baltimore’s Space Telescope Institute.

Lauren Gold | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Physics and Astronomy:

nachricht A tale of two pulsars' tails: Plumes offer geometry lessons to astronomers
18.01.2017 | Penn State

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>