Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shadow technique improves measurement of micro holes

06.06.2005


Sometimes seeing a shadow can be as good or better than seeing the real thing. A new measurement method* developed by researchers working at the National Institute of Standards and Technology (NIST) is a case in point. The method uses the shadow cast by a small glass probe to infer the dimensions of tiny, microscale holes or other micrometer-sized components. The technique may provide an improved quality control method for measuring the interior dimensions of fuel nozzles, fiber optic connectors, biomedical stents, ink jet cartridges and other precision-engineered products.



Designed to be implemented with the type of coordinate measuring machine (CMM) routinely used in precision manufacturing settings, the method uses a flexible glass fiber with a microsphere attached on one end. The glass probe is attached to the CMM’s positioning system, inserted into the part to be measured, and systematically touched to the part’s interior walls in multiple locations. A light-emitting diode is used to illuminate the glass fiber. While the microsphere inside the part is not visible, the shadow of the attached fiber--with a bright band of light at its center--shows the amount of deflection in the probe each time the part’s interior is touched. A camera records the shadow positions. Based on prior calibration of the force required to bend the probe a specific distance, the part’s dimensions can be determined with an uncertainty of about 35 nanometers (nm). The method can be used for holes as small as 100 micrometers in diameter.

"Our probe has a much smaller measurement uncertainty than other available methods and it is very cost effective to make," says Bala Muralikrishnan, a NIST guest researcher from the University of North Carolina at Charlotte.


The thin, glass fiber is about 20 millimeters long and 50 micrometers in diameter, making it especially useful for measuring relatively deep holes not easily measured with other methods. Replacement probes cost about $100 compared to about $1,000 for those manufactured using silicon micromachining techniques.

Gail Porter | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht MEMS chips get metatlenses
21.02.2018 | American Institute of Physics

nachricht International team publishes roadmap to enhance radioresistance for space colonization
21.02.2018 | Biogerontology Research Foundation

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

MEMS chips get metatlenses

21.02.2018 | Physics and Astronomy

International team publishes roadmap to enhance radioresistance for space colonization

21.02.2018 | Physics and Astronomy

World's first solar fuels reactor for night passes test

21.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>