Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST photon detectors have record efficiency

03.06.2005


Sensors that detect and count single photons, the smallest quantities of light, with 88 percent efficiency have been demonstrated by physicists at the National Institute of Standard and Technology (NIST). This record efficiency is an important step toward making reliable single photon detectors for use in practical quantum cryptography systems, the most secure method known for ensuring the privacy of a communications channel.


The four yellow squares in the center of this micrograph are NIST single photon detectors. The top two detectors are 25 by 25 micrometers. The bottom two detectors are 50 by 50 micrometers. The detectors operate with a record 88 percent efficiency. Credit: NIST



Described in the June issue of Physical Review A, Rapid Communications,* the NIST detectors are composed of a small square of tungsten film, 25 by 25 micrometers and 20 nanometers thick, chilled to about 110 milliKelvin, the transition temperature between normal conductivity and superconductivity. When a fiber-optic line delivers a photon to the tungsten film, the temperature rises and results in an increase in electrical resistance. The change in temperature is proportional to the photon energy, allowing the sensor to determine the number of photons in a pulse of monochromatic light.

This type of detector typically has limited efficiency because some photons are reflected from the front surface and others are transmitted all the way through the tungsten. NIST scientists more than quadrupled the detection efficiency over the past two years by depositing the tungsten over a metallic mirror and topping it with an anti-reflective coating, to enable absorption of more light in the tungsten layer.


The NIST sensors operate at the wavelength of near-infrared light used for fiber-optic communications and produce negligible false (or dark) counts. Simulations indicate it should be possible to increase the efficiency well above 99 percent at any wavelength in the ultraviolet to near-infrared frequency range, by building an optical structure with more layers and finer control over layer thickness, according to the paper.

Quantum communications and cryptography systems use the quantum properties of photons to represent 1s and 0s. The NIST sensors could be used as receivers for quantum communications systems, calibration tools for single photon sources, and evaluation tools for testing system security. They also could be used to study the performance of ultralow light optical systems and to test the principles of quantum physics. The work is supported by the Director of Central Intelligence postdoctoral program and the Advanced Research and Development Activity.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>