Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Einstein Year 2005: Measuring the shape of distant stars using gravitational microlensing

01.06.2005


The Galaxy Cluster Abell 2218 is so massive that it magnifies and distorts images of faraway galaxies that appear as “arcs” throughout the picture. Copyright NASA/HST.


Comparison of the MOA-33 source oblateness with recent optical interferometry results for Achernar and Altair.


Fifty years after his death, Albert Einstein’s work still provides new tools for understanding our universe. An international team of astronomers has now used a phenomenon first predicted by Einstein in 1936, called gravitational lensing, to determine the shape of stars. This phenomenon, due to the effect of gravity on light rays, led to the development of gravitational optics techniques, among them gravitational microlensing. It is the first time that this well-known technique has been used to determine the shape of a star.

Most of the stars in the sky are point-like, making it very difficult to evaluate their shape. Recent progress in optical interferometry has made it possible to measure the shape of a few stars. In June 2003, for instance, the star Achernar (Alpha Eridani) was found to be the flattest star ever seen, using observations from the Very Large Telescope Interferometer (see ESO Press Release for details about this discovery). Until now, only a few measurements of stellar shape have been reported, partly due to the difficulty of carrying such measurements. It is important, however, to obtain further accurate determinations of stellar shape, as such measurements help to test theoretical stellar models.

For the first time, an international team of astronomers [1], led by N.J. Rattenbury (from Jodrell Bank Observatory, UK), applied gravitational lensing techniques to determine the shape of a star. These techniques rely on the gravitational bending of light rays. If light coming from a bright source passes close to a foreground massive object, the light rays will be bent, and the image of the bright source will be altered. If the foreground massive object (the “lens”) is point-like and perfectly aligned with the Earth and the bright source, the altered image as seen from the Earth will be a ring shape, the so-called “Einstein ring”. However, most real cases differ from this ideal situation, and the observed image is altered in a more complicated way. The image below shows an example of gravitational lensing by a massive galaxy cluster.



Gravitational microlensing, as used by Rattenbury and his colleagues, also relies on the deflection of light rays by gravity. Gravitational microlensing is the term used to describe gravitational lensing events where the lens is not massive enough to produce resolvable images of the background source. The effect can still be detected as the distorted images of the source are brighter than the unlensed source. The observable effect of gravitational microlensing is therefore a temporary apparent magnification of the background source. In some cases, the microlensing effect may increase the brightness of the background source by a factor of up to 1000. As already pointed out by Einstein, the alignments required for the microlensing effect to be observed are rare. Moreover, as all stars are in motion, the effect is transitory and non-repeating. Microlensing events occur over timescales from weeks to months, and require long-term surveys to be detected. Such survey programs have existed since the 1990s. Today, two survey teams are operating: a Japan/New Zealand collaboration known as MOA (Microlensing Observations in Astrophysics) and a Polish/Princeton collaboration known as OGLE (Optical Gravitational Lens Experiment). The MOA team observes from New Zealand and the OGLE team from Chile. They are supported by two follow-up networks, MicroFUN and PLANET/RoboNET, that operate about a dozen telescopes around the globe.

The microlensing technique has been applied to search for dark matter around our Milky Way and other galaxies. This technique has also been used to detect planets orbiting around other stars. For the first time, Rattenbury and his colleagues were able to determine the shape of a star using this technique. The microlensing event that was used was detected in July 2002 by the MOA group. The event is named MOA 2002-BLG-33 (hereafter MOA-33). Combining the observations of this event by five ground-based telescopes together with HST images, Rattenbury and his colleagues performed a new analysis of this event.

The lens of event MOA-33 was a binary star, and such binary lens systems produce microlensing lightcurves that can provide much information about both the source and lens systems. The particular geometry of the observer, lens and source systems during the MOA-33 microlensing event meant that the observed time-dependent magnification of the source star was very sensitive to the actual shape of the source itself. The shape of the source star in microlensing events is usually assumed to be spherical. Introducing parameters describing the shape of the source star into the analysis allowed the shape of the source star to be determined.

Rattenbury and his colleagues estimated the MOA-33 background star to be slightly elongated, with a ratio between the polar and equatorial radius of 1.02 -0.02/+0.04. However, given the uncertainties of the measurement, a circular shape of the star cannot be completely excluded. The figure below compares the shape of the MOA-33 background star with those recently measured for Altair and Achernar. While both Altair and Achernar are only a few parsecs from the Earth, the MOA-33 background star is a more distant star (about 5000 parsecs from the Earth). Indeed, interferometric techniques can only be applied to bright (thus nearby) stars. On the contrary, the microlensing technique makes it possible to determine the shape of much more distant stars. Indeed, there is currently no alternative technique to measure the shape of distant stars.

This technique, however, requires very specific (and rare) geometrical configurations. From statistical considerations, the team estimated that about 0.1% of all detected microlensing events will have the required configurations. About 1000 microlensing events are observed every year. They should become even more numerous in the near future. The MOA group is presently commissioning a new Japan-supplied 1.8m wide-field telescope that will detect events at an increased rate. Also, a US led group is considering plans for a space-based mission called Microlensing Planet Finder. This is being designed to provide a census of all types of planets within the Galaxy. As a by-product, it would also detect events like MOA-33 and provide information on the shapes of stars.

[1] The team is made of N.J. Rattenbury (UK), F. Abe (Japan), D.P. Bennett (USA), I.A. Bond (New Zealand), J.J. Calitz (South Africa), A. Claret (Spain), K.H. Cook (USA), Y. Furuta (Japan), A. Gal-Yam (USA), J-F. Glicenstein (France), J.B. Hearnshaw (New Zealand), P.H. Hauschildt (Germany), P.M. Kilmartin (New Zealand), Y. Kurata (Japan), K. Masuda (Japan), D. Maoz (Israel), Y. Matsubara (Japan), P.J. Meintjes (South Africa), M. Moniez (France), Y. Muraki (Japan), S. Noda (Japan), E.O. Ofek (Israel), K. Okajima (Japan), L. Philpott (New Zealand), S.H. Rhie (USA), T. Sako (Japan), D.J. Sullivan (New Zealand), T. Sumi (USA), D.M. Terndrup (USA), P.J. Tristram (New Zealand), J. Wood (New Zealand), T. Yanagisawa (Japan), P.C.M. Yock (New Zealand).

Dr. Jennifer Martin | EurekAlert!
Further information:
http://www.edpsciences.org

More articles from Physics and Astronomy:

nachricht The moon is front and center during a total solar eclipse
24.07.2017 | NASA/Goddard Space Flight Center

nachricht Superluminous supernova marks the death of a star at cosmic high noon
24.07.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>