Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA sees orbiting stars flooding space with gravitational waves

31.05.2005


A scientist using NASA’s Chandra X-ray Observatory has found evidence that two white dwarf stars are orbiting each other in a death grip, destined to merge.



The data indicate gravitational waves are carrying energy away from the star system at a prodigious rate, making it a prime candidate for future missions designed to directly detect these ripples in space-time.

Einstein’s General Theory of Relativity predicted a binary star system should emit gravitational waves that rush away at the speed of light and cause the stars to move closer together. As the stars move closer together, the orbital period decreases, and it can be measured by Chandra. The orbital period of this system is decreasing by 1.2 milliseconds every year. This is a rate consistent with the theory that predicted loss of energy due to gravitational waves.


The system is known as RX J0806.3+1527 or J0806. The white dwarf pair in J0806 might have the smallest orbit of any known binary system. The stars are only about 50,000 miles apart, a fifth of the distance from the Earth to the moon. As the stars swirl closer together, traveling in excess of one million mph, the production of gravitational waves increases.

"If confirmed, J0806 could be one of the brightest sources of gravitational waves in our galaxy," said Tod Strohmayer of NASA’s Goddard Space Flight Center, Greenbelt, Md. He presented data today at the American Astronomical Society meeting in Minneapolis. "It could be among the first to be directly detected with an upcoming space mission called LISA, the Laser Interferometer Space Antenna," he added.

White dwarfs are remnants of stars that have used up all their fuel. Along with neutron stars and black holes, white dwarfs are called compact objects, because they pack a lot of mass into a small volume. The white dwarfs in the J0806 system each have an estimated mass of one-half the sun, yet are only about the size of Earth.

Optical and X-ray observations of J0806 showed periodic variations of 321.5 seconds, barely more than five minutes. The observation in J0806 is most likely the orbital period of the white dwarf system. However the possibility that it represents the spin of one of its white dwarfs cannot be completely ruled out.

"It’s either the most compact binary known or one of the most unusual systems we’ve ever seen. Either way it’s got a great story to tell," Strohmayer said.

Strohmayer’s Chandra X-ray observations tighten orbital decay estimates made through optical independent observations by other research teams. Strohmayer’s data will be published in an upcoming issue of The Astrophysical Journal.

Megan Watzke | EurekAlert!
Further information:
http://www.cfa.harvard.edu

More articles from Physics and Astronomy:

nachricht NUS engineers develop novel method for resolving spin texture of topological surface states using transport measurements
26.04.2018 | National University of Singapore

nachricht European particle-accelerator community publishes the first industry compendium
26.04.2018 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>