Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carina Nebula dust pillars harbor embedded stars, says research team

31.05.2005


Astronomers using NASA’s Spitzer Space Telescope have imaged a giant molecular cloud being shredded by howling stellar winds and searing radiation, exposing a group of towering dust pillars harboring infant stars, according to a University of Colorado at Boulder researcher.

Nathan Smith, a Hubble Fellow and postdoctoral researcher at CU-Boulder’s Center for Astrophysics and Space Astronomy, said the violent panorama is unfolding in the Carina Nebula, located in the southern Milky Way some 10,000 light years from Earth. The orbiting infrared telescope imaged a new generation of stars in various stages of evolution, several dozen of which now gleam like gems at the heads of huge dust pillars created by the galactic weather conditions.

"Spitzer is providing us with the first snapshot of a molecular cloud being shredded on such a large scale," said Smith. "Stellar winds and blowtorch-like radiation coming off the massive stars are ripping apart the cloud, exposing a new generation of stars at the ends of these pillars."



Smith presented the results of the NASA-funded study at the 206th meeting of the American Astronomical Society held May 29 to June 2 in Minneapolis. "One of the motivations for our observations is that our own sun probably formed in a violent region like the one we are seeing in the Carina Nebula," said Smith.

Located in the southern Milky Way galaxy, the Carina Nebula is visible to the human eye and contains the variable star Eta Carina, which puts out more energy than 1 million suns and which is expected to explode into a supernova in the coming millennia. Stellar winds whipping from Eta Carina and several dozen other massive stars in the region blow at 2,000 kilometers a second, or more than 4 million miles per hour. "There is a fierce contest going on," said Smith. "On one hand we have these massive, first-generation stars trying to remove all of this gaseous material, and the young stars like those embedded in the dust pillars are trying to accrete the material to build themselves up."

Launched in 2003, the heat-seeking Spitzer Space Telescope is an ideal observatory to study the wild activity in the Carina Nebula, said Smith. The orbiting telescope’s infrared array camera penetrates regions like Carina filled with dense clouds of gas and dust, allowing astronomers to witness star formation processes that are shrouded from the view of other types of telescopes.

The study also included the University of Wisconsin-Madison’s Ed Churchwell, Brian Babler and Marilyn Meade, Barbara Whitney of the Space Science Institute in Boulder, Vanderbilt University’s Keivan Stassun, Arizona State University’s Jon Morse and the University of Minnesota’s Robert Gehrz. The Spitzer Space Telescope is managed for NASA by the Jet Propulsion Laboratory in Pasadena and science operations for the effort are conducted at the Spitzer Science Center at the California Institute of Technology in Pasadena.

Smith and his colleagues combined several hundred images obtained by scanning the South Pillar region of the nebula with Spitzer in spring 2005 to produce the mosaic. Using four different camera filters, the team detected more than 17,000 stars, including those forming at the pillar heads. "We looked only at the most active region, but there are probably many more stars embedded in pillars in the surrounding area," he said.

The researchers believe Eta Carina was the primary player that shaped the gigantic dust pillars. Before 1840 -- when the star shed the equivalent of 10 solar masses of material from its outer layer -- it is thought to have been the most luminous UV light source in the nebula. For several years after the 1840 event, Eta Carina was the second brightest star in the sky.

Sculpted from reservoirs of gas and dust by the whipping stellar winds and high-energy radiation, the dust pillars "point back" toward the luminous Eta Carina, said Smith. "All of the different pillars were exposed to the same light bulb."

The Carina Nebula has a diameter of about 200 light years, and the dust pillars are up to 10 light years, or 50 trillion miles, in length, said Smith. The Carina Nebula is about 100 times more luminous than the much closer Orion Nebula and may contain as many as 100,000 young stars, most of which are faint, low mass stars like the sun.

Nathan Smith | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>