Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carina Nebula dust pillars harbor embedded stars, says research team

31.05.2005


Astronomers using NASA’s Spitzer Space Telescope have imaged a giant molecular cloud being shredded by howling stellar winds and searing radiation, exposing a group of towering dust pillars harboring infant stars, according to a University of Colorado at Boulder researcher.

Nathan Smith, a Hubble Fellow and postdoctoral researcher at CU-Boulder’s Center for Astrophysics and Space Astronomy, said the violent panorama is unfolding in the Carina Nebula, located in the southern Milky Way some 10,000 light years from Earth. The orbiting infrared telescope imaged a new generation of stars in various stages of evolution, several dozen of which now gleam like gems at the heads of huge dust pillars created by the galactic weather conditions.

"Spitzer is providing us with the first snapshot of a molecular cloud being shredded on such a large scale," said Smith. "Stellar winds and blowtorch-like radiation coming off the massive stars are ripping apart the cloud, exposing a new generation of stars at the ends of these pillars."



Smith presented the results of the NASA-funded study at the 206th meeting of the American Astronomical Society held May 29 to June 2 in Minneapolis. "One of the motivations for our observations is that our own sun probably formed in a violent region like the one we are seeing in the Carina Nebula," said Smith.

Located in the southern Milky Way galaxy, the Carina Nebula is visible to the human eye and contains the variable star Eta Carina, which puts out more energy than 1 million suns and which is expected to explode into a supernova in the coming millennia. Stellar winds whipping from Eta Carina and several dozen other massive stars in the region blow at 2,000 kilometers a second, or more than 4 million miles per hour. "There is a fierce contest going on," said Smith. "On one hand we have these massive, first-generation stars trying to remove all of this gaseous material, and the young stars like those embedded in the dust pillars are trying to accrete the material to build themselves up."

Launched in 2003, the heat-seeking Spitzer Space Telescope is an ideal observatory to study the wild activity in the Carina Nebula, said Smith. The orbiting telescope’s infrared array camera penetrates regions like Carina filled with dense clouds of gas and dust, allowing astronomers to witness star formation processes that are shrouded from the view of other types of telescopes.

The study also included the University of Wisconsin-Madison’s Ed Churchwell, Brian Babler and Marilyn Meade, Barbara Whitney of the Space Science Institute in Boulder, Vanderbilt University’s Keivan Stassun, Arizona State University’s Jon Morse and the University of Minnesota’s Robert Gehrz. The Spitzer Space Telescope is managed for NASA by the Jet Propulsion Laboratory in Pasadena and science operations for the effort are conducted at the Spitzer Science Center at the California Institute of Technology in Pasadena.

Smith and his colleagues combined several hundred images obtained by scanning the South Pillar region of the nebula with Spitzer in spring 2005 to produce the mosaic. Using four different camera filters, the team detected more than 17,000 stars, including those forming at the pillar heads. "We looked only at the most active region, but there are probably many more stars embedded in pillars in the surrounding area," he said.

The researchers believe Eta Carina was the primary player that shaped the gigantic dust pillars. Before 1840 -- when the star shed the equivalent of 10 solar masses of material from its outer layer -- it is thought to have been the most luminous UV light source in the nebula. For several years after the 1840 event, Eta Carina was the second brightest star in the sky.

Sculpted from reservoirs of gas and dust by the whipping stellar winds and high-energy radiation, the dust pillars "point back" toward the luminous Eta Carina, said Smith. "All of the different pillars were exposed to the same light bulb."

The Carina Nebula has a diameter of about 200 light years, and the dust pillars are up to 10 light years, or 50 trillion miles, in length, said Smith. The Carina Nebula is about 100 times more luminous than the much closer Orion Nebula and may contain as many as 100,000 young stars, most of which are faint, low mass stars like the sun.

Nathan Smith | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Physics and Astronomy:

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

nachricht Traffic jam in empty space
19.01.2017 | Universität Konstanz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

The Great Unknown: Risk-Taking Behavior in Adolescents

19.01.2017 | Studies and Analyses

Magnetic moment of a single antiproton determined with greatest precision ever

19.01.2017 | Physics and Astronomy

CRISPR meets single-cell sequencing in new screening method

19.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>