Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Silicon Diodes Treat Burns


The St. Petersburg researchers suggest that infrared emission should be used to treat burns. The Foundation for Assistance to Small Innovative Enterprises (FASIE) will help the authors in the framework of the “Start” program to develop and begin production of devices required for such treatment based on silicon light-emitting diodes.

A unique device based on silicon light-emitting diodes was developed by the St. Petersburg physicists – specialists of the Ioffe Physico-Technical Institute, Russian Academy of Sciences, and the St. Petersburg State Electrotechnical University. Emission of far infra-red range of wave-lengths generated by this device will help to cure in an ordinary hospital even such burns that could be previously treated only in specialized burn centers. The Foundation for Assistance to Small Innovative Enterprises (FASIE) will help the researchers to arrange production of remarkable devices.

“The fact that the far infrared emission promotes quicker healing of burns can be considered ascertained, says project manager, Professor Bagrayev, Doctor of Science (Physics&Mathematics). We have already made sure of that through applying the small-size device developed by us, which proved well in treating arthrosis, wounds, ulcers and bedsore. It has turned out that in case of burns the device helps very efficiently: affected surface heals quicker and hurts less. However, irradiation of a large surface accordingly requires the radiation source of a larger flat area than the one previously used.

The problem is that until now there existed no far infrared radiation sources of a larger flat area. That is why we have patented our apparatus and treatment mode not only in Russia but also abroad. The radiation spectrum required for efficient treatment should be wideband one, from 3.5 through 40 microns, while all previously known far infrared light-emitting diodes either had narrow radiation spectrum and were expensive or provided strong parasitic effect - emission in the near infrared area. That is, they heat up the patient too much and can even burn the patient, which is absolutely unacceptable.”

The far infrared range panel emitters developed by the group under guidance of N.T. Bagrayev are based on silicon. The researchers have developed technology, which allows to grow extra small p-n barriers (only two to three nm deep) on the surface of single-crystalline silicon, i.e. tiny radiating light-emitting diode elements parted by 2 nm thick barriers.

However, the value of that structure would have been low, if the authors did not invent the way to reinforce emission from these extrasmall light-emitting diodes. And they did invent it! The researchers learned to grow a resonator layer on the same plate - silicon microscopical pyramidia, covering all over the formerly smooth crystal boundary, consisting of multitude radiating elements.

Based on such well-disposed rows of silicon light-emitting diodes, the researchers have now learned to produce large panels (the square being 1.8 m x 0.6 m), each of the panel will contain 108 pieces. Final clinical trials of the new device in the Vishnevsky Scientific Research Institute are scheduled for April this year, but the authors do not expect any troublesome surprises: all preliminary tests have been successful. Moreover, the researchers are sure that the device they have developed will be efficient even in cases that seemed hopeless so far– i.e., patients in shock condition, with large area of burns.

The first infrared devices for treating burns are scheduled for release already by the end of 2006. These vitally important devices will be produced by a small-scale enterprise to be set up in the framework of the ‘Start” program with the help of the Foundation for Assistance to Small Innovative Enterprises. The enterprise will be called “Dipole Structures”.

Sergey Komarov | alfa
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The gene of autumn colours

27.10.2016 | Life Sciences

Polymer scaffolds build a better pill to swallow

27.10.2016 | Life Sciences

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>