Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silicon Diodes Treat Burns

30.05.2005


The St. Petersburg researchers suggest that infrared emission should be used to treat burns. The Foundation for Assistance to Small Innovative Enterprises (FASIE) will help the authors in the framework of the “Start” program to develop and begin production of devices required for such treatment based on silicon light-emitting diodes.



A unique device based on silicon light-emitting diodes was developed by the St. Petersburg physicists – specialists of the Ioffe Physico-Technical Institute, Russian Academy of Sciences, and the St. Petersburg State Electrotechnical University. Emission of far infra-red range of wave-lengths generated by this device will help to cure in an ordinary hospital even such burns that could be previously treated only in specialized burn centers. The Foundation for Assistance to Small Innovative Enterprises (FASIE) will help the researchers to arrange production of remarkable devices.

“The fact that the far infrared emission promotes quicker healing of burns can be considered ascertained, says project manager, Professor Bagrayev, Doctor of Science (Physics&Mathematics). We have already made sure of that through applying the small-size device developed by us, which proved well in treating arthrosis, wounds, ulcers and bedsore. It has turned out that in case of burns the device helps very efficiently: affected surface heals quicker and hurts less. However, irradiation of a large surface accordingly requires the radiation source of a larger flat area than the one previously used.


The problem is that until now there existed no far infrared radiation sources of a larger flat area. That is why we have patented our apparatus and treatment mode not only in Russia but also abroad. The radiation spectrum required for efficient treatment should be wideband one, from 3.5 through 40 microns, while all previously known far infrared light-emitting diodes either had narrow radiation spectrum and were expensive or provided strong parasitic effect - emission in the near infrared area. That is, they heat up the patient too much and can even burn the patient, which is absolutely unacceptable.”

The far infrared range panel emitters developed by the group under guidance of N.T. Bagrayev are based on silicon. The researchers have developed technology, which allows to grow extra small p-n barriers (only two to three nm deep) on the surface of single-crystalline silicon, i.e. tiny radiating light-emitting diode elements parted by 2 nm thick barriers.

However, the value of that structure would have been low, if the authors did not invent the way to reinforce emission from these extrasmall light-emitting diodes. And they did invent it! The researchers learned to grow a resonator layer on the same plate - silicon microscopical pyramidia, covering all over the formerly smooth crystal boundary, consisting of multitude radiating elements.

Based on such well-disposed rows of silicon light-emitting diodes, the researchers have now learned to produce large panels (the square being 1.8 m x 0.6 m), each of the panel will contain 108 pieces. Final clinical trials of the new device in the Vishnevsky Scientific Research Institute are scheduled for April this year, but the authors do not expect any troublesome surprises: all preliminary tests have been successful. Moreover, the researchers are sure that the device they have developed will be efficient even in cases that seemed hopeless so far– i.e., patients in shock condition, with large area of burns.

The first infrared devices for treating burns are scheduled for release already by the end of 2006. These vitally important devices will be produced by a small-scale enterprise to be set up in the framework of the ‘Start” program with the help of the Foundation for Assistance to Small Innovative Enterprises. The enterprise will be called “Dipole Structures”.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>