Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Silicon Diodes Treat Burns


The St. Petersburg researchers suggest that infrared emission should be used to treat burns. The Foundation for Assistance to Small Innovative Enterprises (FASIE) will help the authors in the framework of the “Start” program to develop and begin production of devices required for such treatment based on silicon light-emitting diodes.

A unique device based on silicon light-emitting diodes was developed by the St. Petersburg physicists – specialists of the Ioffe Physico-Technical Institute, Russian Academy of Sciences, and the St. Petersburg State Electrotechnical University. Emission of far infra-red range of wave-lengths generated by this device will help to cure in an ordinary hospital even such burns that could be previously treated only in specialized burn centers. The Foundation for Assistance to Small Innovative Enterprises (FASIE) will help the researchers to arrange production of remarkable devices.

“The fact that the far infrared emission promotes quicker healing of burns can be considered ascertained, says project manager, Professor Bagrayev, Doctor of Science (Physics&Mathematics). We have already made sure of that through applying the small-size device developed by us, which proved well in treating arthrosis, wounds, ulcers and bedsore. It has turned out that in case of burns the device helps very efficiently: affected surface heals quicker and hurts less. However, irradiation of a large surface accordingly requires the radiation source of a larger flat area than the one previously used.

The problem is that until now there existed no far infrared radiation sources of a larger flat area. That is why we have patented our apparatus and treatment mode not only in Russia but also abroad. The radiation spectrum required for efficient treatment should be wideband one, from 3.5 through 40 microns, while all previously known far infrared light-emitting diodes either had narrow radiation spectrum and were expensive or provided strong parasitic effect - emission in the near infrared area. That is, they heat up the patient too much and can even burn the patient, which is absolutely unacceptable.”

The far infrared range panel emitters developed by the group under guidance of N.T. Bagrayev are based on silicon. The researchers have developed technology, which allows to grow extra small p-n barriers (only two to three nm deep) on the surface of single-crystalline silicon, i.e. tiny radiating light-emitting diode elements parted by 2 nm thick barriers.

However, the value of that structure would have been low, if the authors did not invent the way to reinforce emission from these extrasmall light-emitting diodes. And they did invent it! The researchers learned to grow a resonator layer on the same plate - silicon microscopical pyramidia, covering all over the formerly smooth crystal boundary, consisting of multitude radiating elements.

Based on such well-disposed rows of silicon light-emitting diodes, the researchers have now learned to produce large panels (the square being 1.8 m x 0.6 m), each of the panel will contain 108 pieces. Final clinical trials of the new device in the Vishnevsky Scientific Research Institute are scheduled for April this year, but the authors do not expect any troublesome surprises: all preliminary tests have been successful. Moreover, the researchers are sure that the device they have developed will be efficient even in cases that seemed hopeless so far– i.e., patients in shock condition, with large area of burns.

The first infrared devices for treating burns are scheduled for release already by the end of 2006. These vitally important devices will be produced by a small-scale enterprise to be set up in the framework of the ‘Start” program with the help of the Foundation for Assistance to Small Innovative Enterprises. The enterprise will be called “Dipole Structures”.

Sergey Komarov | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Sharpening the X-ray view of the nanocosm
23.03.2018 | Changchun Institute of Optics, Fine Mechanics and Physics

nachricht Drug or duplicate?
23.03.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>