Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Inverse Doppler effect: ECE researchers add to the bylaws of physics

25.05.2005


What if the speed of light is a constant only most of the time? What if gravity sometimes pushed instead of pulled? Scientists are increasingly asking what would seem like far-out questions regarding the laws and rules of physics after discovering conditions and materials where the rules don’t quite apply. Take the Doppler effect.



The Doppler effect is in use everywhere, everyday. Police use it to catch speeders. Satellites use it to track space debris and air-traffic controllers use it to monitor aircraft. The Doppler effect explains why the pitch changes from high to low when a police siren passes you on the street. As the siren moves toward you, it is catching up to and compressing the sound waves it produces, thus the higher pitch. When it passes, the sound expands to fill the increasing space between you and the noise. The sound waves are longer and the pitch is lower.

The inverse Doppler effect is not something you can hear, but understanding it could one day lead to important advances in optics and communications equipment.


Predicted in the 1940s, the inverse Doppler effect was first observed in 2003 by British researchers Nigel Seddon and Trevor Bearpark using an experimental magnetic, nonlinear transmission line sketched out by Avenir Belyantsev and Alexander Kozyrev in 2000. This nonlinear transmission line is a synthetic structure that allows electromagnetic waves to propagate along it in a new fashion. In the experiment, a pulse of current fed into the line acts as the moving "siren" or shockwave. It generates a radio frequency (RF) signal but as the pulse recedes, the spacing between the peaks and troughs in the waves tighten rather than loosen: the inverse of the Doppler effect. That’s just the opposite of what happens with sound waves when a siren passes you.

Reporting in the May 20 issue of the journal Physics Review Letters, University of Wisconsin-Madison Research Associate Alexander Kozyrev and Electrical and Computer Engineering Professor Dan van der Weide prove how an RF signal moving through this special transmission line can reverse itself and fall in sync with the shockwave in order to realize the inverse Doppler effect. They demonstrated that the shift arises from a complex and remarkable spatial structure of waves propagating along the line.

Normally consisting of only one spatial period, the considered system exhibits multiple spatial periods enabled by the periodicity of the nonlinear transmission line structure. Their explanation may point the way toward making materials in which this new effect can operate.

"There are now emerging a whole class of experiments, and theories to back them up, that involve the creation of materials that support electromagnetic wave propagation in ways that are not observed in nature," van der Weide says. "In other words, it’s turning nature on its head. Some might ask, ’If you can only do this in artificial material, what good is it?’ The answer is that we might be able to create materials that could support this type of effect for light or other electromagnetic waves. The larger point is that physicists are starting to challenge what were thought to be the basic laws of nature."

In 1968, Russian theorist V.G. Veselago predicted that materials could be engineered to interact with their environment in the opposite of how natural materials react. In 2000, researchers at the University of California-San Diego (UCSD) confirmed this, creating what’s known as the first "left-handed" material.

In nature, all materials appear to obey the "right-hand rule." If the fingers of the right hand represent the waves’ electric field, and if the fingers curl around to the base of the hand, representing the magnetic field, then the outstretched thumb indicates the direction of the flow of power. But the UCSD team created material that caused fields to move to the left even though the electromagnetic energy moved to the right. Light waves produced by such material should also produce an inverted Doppler effect. Van der Weide’s group, in collaboration with researchers at MIT and the University of Delaware, is also exploring left-handed media.

"This is kind of the tip of the iceberg in terms of discovering things that we’ve held to be inviolable. We’re finding they can, in fact, be violated under certain conditions," van der Weide says. "Can we build structures that would support that kind of thing? The answer appears to be yes."

Dan van der Weide | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Physics and Astronomy:

nachricht Breaking the optical bandwidth record of stable pulsed lasers
24.01.2017 | Institut national de la recherche scientifique - INRS

nachricht European XFEL prepares for user operation: Researchers can hand in first proposals for experiments
24.01.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>