Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Inverse Doppler effect: ECE researchers add to the bylaws of physics

25.05.2005


What if the speed of light is a constant only most of the time? What if gravity sometimes pushed instead of pulled? Scientists are increasingly asking what would seem like far-out questions regarding the laws and rules of physics after discovering conditions and materials where the rules don’t quite apply. Take the Doppler effect.



The Doppler effect is in use everywhere, everyday. Police use it to catch speeders. Satellites use it to track space debris and air-traffic controllers use it to monitor aircraft. The Doppler effect explains why the pitch changes from high to low when a police siren passes you on the street. As the siren moves toward you, it is catching up to and compressing the sound waves it produces, thus the higher pitch. When it passes, the sound expands to fill the increasing space between you and the noise. The sound waves are longer and the pitch is lower.

The inverse Doppler effect is not something you can hear, but understanding it could one day lead to important advances in optics and communications equipment.


Predicted in the 1940s, the inverse Doppler effect was first observed in 2003 by British researchers Nigel Seddon and Trevor Bearpark using an experimental magnetic, nonlinear transmission line sketched out by Avenir Belyantsev and Alexander Kozyrev in 2000. This nonlinear transmission line is a synthetic structure that allows electromagnetic waves to propagate along it in a new fashion. In the experiment, a pulse of current fed into the line acts as the moving "siren" or shockwave. It generates a radio frequency (RF) signal but as the pulse recedes, the spacing between the peaks and troughs in the waves tighten rather than loosen: the inverse of the Doppler effect. That’s just the opposite of what happens with sound waves when a siren passes you.

Reporting in the May 20 issue of the journal Physics Review Letters, University of Wisconsin-Madison Research Associate Alexander Kozyrev and Electrical and Computer Engineering Professor Dan van der Weide prove how an RF signal moving through this special transmission line can reverse itself and fall in sync with the shockwave in order to realize the inverse Doppler effect. They demonstrated that the shift arises from a complex and remarkable spatial structure of waves propagating along the line.

Normally consisting of only one spatial period, the considered system exhibits multiple spatial periods enabled by the periodicity of the nonlinear transmission line structure. Their explanation may point the way toward making materials in which this new effect can operate.

"There are now emerging a whole class of experiments, and theories to back them up, that involve the creation of materials that support electromagnetic wave propagation in ways that are not observed in nature," van der Weide says. "In other words, it’s turning nature on its head. Some might ask, ’If you can only do this in artificial material, what good is it?’ The answer is that we might be able to create materials that could support this type of effect for light or other electromagnetic waves. The larger point is that physicists are starting to challenge what were thought to be the basic laws of nature."

In 1968, Russian theorist V.G. Veselago predicted that materials could be engineered to interact with their environment in the opposite of how natural materials react. In 2000, researchers at the University of California-San Diego (UCSD) confirmed this, creating what’s known as the first "left-handed" material.

In nature, all materials appear to obey the "right-hand rule." If the fingers of the right hand represent the waves’ electric field, and if the fingers curl around to the base of the hand, representing the magnetic field, then the outstretched thumb indicates the direction of the flow of power. But the UCSD team created material that caused fields to move to the left even though the electromagnetic energy moved to the right. Light waves produced by such material should also produce an inverted Doppler effect. Van der Weide’s group, in collaboration with researchers at MIT and the University of Delaware, is also exploring left-handed media.

"This is kind of the tip of the iceberg in terms of discovering things that we’ve held to be inviolable. We’re finding they can, in fact, be violated under certain conditions," van der Weide says. "Can we build structures that would support that kind of thing? The answer appears to be yes."

Dan van der Weide | EurekAlert!
Further information:
http://www.wisc.edu

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>