Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robotic telescope discovery sheds new light on gamma-ray bursts

20.05.2005


A new type of light was detected from a recent gamma-ray burst, as discovered by Los Alamos National Laboratory and NASA scientists using both burst-detection satellites and a Los Alamos-based robotic telescope.

In a paper published in the May 12 issue of Nature, Los Alamos scientists and NASA announced the detection of a form of light generated by the same process that drives the gamma ray burst itself, yielding new insights about these enigmatic cosmic explosions -- the most powerful events since the Big Bang.

Dec. 19, 2004 at 01:42 Universal Time, both the European Space Agency’s INTEGRAL satellite and NASA’s Swift satellite detected the onset of a powerful gamma-ray burst in the direction of the constellation Cassiopeia. Within seconds, the RAPTOR (RAPid Telescopes for Optical Response) telescopes on site at Los Alamos swung into action to search for optical light from the explosion.



By responding so quickly, RAPTOR-S was the first optical telescope ever to begin observations before the gamma-ray light reached its peak brightness. The quick response allowed astronomers to study the relationship between the visible light variations and the gamma-ray variations for an unprecedented six and a half minutes. The results of that comparison is challenging what astronomers knew about the origin of visible light from gamma-ray bursts.

Until now, both the limited observations and the standard theory suggested that the gamma rays and the light from gamma-ray bursts had very different origins. But, these new, sensitive, RAPTOR observations show that there is a unique visible light that varies in concert with the gamma-rays.

"This close correlation indicates that both components have a common origin," said Tom Vestrand, the Los Alamos RAPTOR project leader, "and our best guess is they are generated by a shock driven into the GRB ejecta by the engine that powers the explosion." The GRB ejecta form a jet composed of the superheated material from the star that blew up. The ejecta, moving as a highly relativistic material, travels at 99.999 percent of the speed of light, launched by the cataclysmic explosion.

The extreme relativistic nature of the explosion means that the light from events that occur over the course of a day at the burst arrives at Earth within the span of minutes. "The really exciting aspect of this new optical component is that when telescopes can get there fast enough to measure it, comparing its properties with those simultaneously observed in gamma rays will allow us to measure the physical characteristics of the jet and the burst engine," Vestrand added.

Robotic telescopes are fundamentally changing modern astronomy. NASA’s recently launched Swift satellite has the ability to locate gamma-ray bursts rapidly, reorient itself autonomously for follow-up observing, and to distribute precise positions in seconds to an armada of ground-based telescopes located around the world. "Robotic instruments like RAPTOR can observe GRBs during those critical first minutes of the explosion. And that’s where the game is today" said Przemyslaw R. Wozniak, an Oppenheimer Postdoctoral Fellow at Los Alamos.

Astronomers at Los Alamos are also busy working on the future of robotic astronomy in the form of a program called the Thinking Telescopes Project. "Humans do not have the attention span, response time or memory required to monitor the huge volume of data, recognize important variations, and respond in real time that one needs to monitor the night sky for important changes," said Vestrand.

The goal of Thinking Telescopes project is to merge robotic instrumentation with machine learning techniques and advanced massive database technology to build robotic telescope systems that can recognize and autonomously make follow up observations of important changes in the night sky without human intervention -- so called "thinking" telescopes.

For more about the Thinking Telescopes Project and RAPTOR go to www.thinkingtelescopes.lanl.gov/ or www.raptor.lanl.gov/ online.

The RAPTOR telescopes are supported as part of the Thinking Telescopes Project that is funded by the Laboratory Directed Research and Development program at Los Alamos National Laboratory.

Los Alamos National Laboratory is operated by the University of California for the National Nuclear Security Administration of the U.S. Department of Energy and works in partnership with NNSA’s Sandia and Lawrence Livermore national laboratories to support NNSA in its mission.

Los Alamos enhances global security by ensuring the safety and reliability of the U.S. nuclear deterrent, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to defense, energy, environment, infrastructure, health and national security concerns.

Nancy Ambrosiano | EurekAlert!
Further information:
http://www.lanl.gov

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>