Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA issues first Jules Verne payload list

20.05.2005


In 2006, with the launch of Jules Verne, the Automated Transfer Vehicle (ATV) will become the new European powerful automatic re-supply spaceship able to bring an indispensable payload to the International Space Station and its permanent crew. This first ATV will carry a mix of supplies depending on the Station’s needs and its own payload capacity.



ESA, NASA and Russian counterparts are already defining the priorities to accommodate the most appropriate combination of different supplies for this inaugural flight. The combination is quite flexible and can include different amounts of re-boost propellant, refuelling propellant for the Station’s own propulsion system, drinking water, air and dry cargo, which is stored in the 48 m3 pressurized section of the ATV.

In all Jules Verne will carry about seven tonnes of cargo to the orbiting outpost 400 km or so above the Earth thanks to the Ariane 5 launcher, which is capable of boosting up to 20.5 tonnes into low Earth orbit.


Payloads from different countries

Although ATV will dock to the Russian Zvezda module, it will carry most of its dry payload for the US elements of the ISS. At the launch site in Kourou, French Guiana, six weeks before flight, Jules Verne will be loaded with 1 300 kg of dry cargo out of the 5 500 kg maximum capacity.

Most of the dry cargo provided by NASA will be clothes, food, towels and wipes for the crew, logistics items such as batteries and spare parts for maintenance of the Station. This cargo will also include ESA experiments such as ANITA, which will constantly monitor the cabin air, and some Russian hardware to be added to the panels of the Station’s Russian Service Module.

Contained in bags of different sizes, the cargo is loaded horizontally through the large opening at the aft end of the pressurized module, opposite the docking system at the front end. At this stage of the launch preparations in Kourou, the ATV service module, housing the avionics and the propulsion system, is not yet attached to the pressurized cargo section.

The bags are neatly tied down with an adjustable belt into six “racks” which are modular storage cargo elements and look like metal shelving. About 2.3 tonnes of such cargo configurable hardware including racks, pipes, tanks and bags are needed to store and carry contents to the Station.

To add flexibility in the re-supply capability of ATV, a small fraction of the dry cargo can be loaded through the docking hatch just eight days before launch when the spaceship is undergoing final launch preparations on top of the 50-metre Ariane 5, just before being enclosed in the white aerodynamically-shaped fairing.

Payload priority: Propellant

“Jules Verne’s mission will be much more complex than the future routine ATV missions since it will actually demonstrate that the ATV can automatically and safely handle any contingency plans designed to ensure the safety of the ISS crew, such as interrupting the rendezvous, stopping its motion and flying away from the ISS”, explains Alberto Novelli, ESA operations manager of the payload for the first ATV mission.

Novelli continues: “For the first ATV flight Jules Verne will use the full capacity of the cargo ship and will carry even more fuel than the following ATV missions. The extra fuel will allow this demonstration flight to test several scenarios and manoeuvres, including contingency situations, such as going back to a parking orbit and delaying the rendezvous until the following day. Such situations require a new docking manoeuvre and would take a lot of fuel – up to about 500 kg. Consequently, about one third of the payload will be fuel.”

The rest of Jules Verne’s payload will be 860 kg of refuelling propellant for the Station’s own propulsion system, 280 kg of drinking water, 20 kg of oxygen and the large amount of re-boost propellant already mentioned.

After a nominal and complex mission in orbit up to the docking, Jules Verne will still carry two tonnes of propellant for re-boost of the Station. The extra fuel not consumed for unexpected scenarios during the free flight phase will automatically be used for extra re-boost of the Space Station during the attached phase. The purpose of the re-boost is to raise the ISS altitude, which naturally decreases with time due to the residual atmospheric drag.

Delivery of “Russian” type water

The ATV is able carry two types of water to the ISS in compliance with the different standards of NASA and the Russian state space agency, Roskosmos:

- The NASA standard requires its water to have low dry residue like the one produced – through reverse electrolyse process – by the fuel cells on board the NASA Space Shuttle. It is disinfected with iodine.

- The basis for Roskosmos standard water is to have some amount of minerals such as calcium, magnesium and fluoride. It is disinfected with silver obtained via electrolysis.

“For Jules Verne, the ISS partners have decided to bring only the Russian type of water. We will have the water ready for delivery less than three months before launch” says Cesare Lobascio, head of Environmental Control and Life Support for Space Vehicles at Alenia Spazio in Turin. The same Italian space firm builds the ATV’s pressurized Integrated Cargo Carrier in its Turin plant.

The Integrated Cargo Carrier has a maximum capacity for water of 840 kg, divided over three water tanks, but on Jules Verne only one tank will be filled.

Waste removal from the ISS

The ATV has about three times the payload capability of its Russian counterpart, the Progress-M cargo vehicle. At the end of its six-month mission, Jules Verne will offload solid waste and wastewater from the Station and burn up during atmospheric re-entry over the Pacific Ocean.

The offload payload has not yet been defined, but liquid waste (up to 840 kg) cannot exceed one sixth of the dry waste (up to 5 500 kg). The ISS crew will steadily fill the cargo section with unwanted material. Up to 6.3 tonnes of unwanted material can be removed from the Station using the ATV.

Dieter Isakeit | alfa
Further information:
http://www.esa.int/esaHS/SEM5ARZCU8E_iss_0.html

More articles from Physics and Astronomy:

nachricht Mars 2020 mission to use smart methods to seek signs of past life
17.08.2017 | Goldschmidt Conference

nachricht Gold shines through properties of nano biosensors
17.08.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>