Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Like the Famous Doughboy, Nanotubes Give When Poked

18.05.2005


Smaller, faster computers, bullet proof t-shirts and itty-bitty robots, such are the promises of nanotechnology and the cylinder-shaped collection of carbon molecules known as nanotubes. But in order for these exciting technologies to hit the marketplace (who wouldn’t want an itty-bitty robot), scientists must understand how these miracle-molecules perform under all sorts of conditions. For, without nanoscience, there would be no nanotechnology.


Using an atomic force microscope, researchers prodded the nanotubes to see how much they give.



In a recent study, researchers at the Georgia Institute of Technology, along with colleagues from the IBM Watson Research Center and the Ecole Polytechnique Federale de Lausanne in Switzerland, found that while nanotubes are extremely stiff when pulled from the ends, they give when poked in the middle. The larger the radius, the softer they become. The finding, which is important for the development of nanoelectronics, is published in the May 6, 2005 edition of the journal Physical Review Letters.

“We know from previous studies that nanotubes are very stiff in the axial direction (end to end) but very little is known about their radial elasticity, mainly because when you’re working with tubes that small it’s very difficult to poke them without pushing them beyond the point where they will be irremediably damaged,” said Elisa Riedo, assistant professor of physics at Georgia Tech.


Using an atomic force microscope (AFM) and testing it with a tip of 35 nanometers in radius, researchers lightly prodded the nanotubes to measure the elasticity.

“By making a very small indentation in the tubes, we were able to measure the radial elasticity of a number of single and multiwalled carbon nanotubes of different radii. What we found was that as we tested this technique with wider and wider nanotubes, the bigger tubes were much less stiff than the smaller tubes,” said Riedo.

Riedo and colleagues began with a single-walled nanotube with a radius of only 0.2 nanometers and slowly inched, or rather nanometered, their way up to multiwalled nanotubes measuring 12 nanometers in radius. They tested 39 nanotubes in all.

“We started with single-walled nanotubes and then measured tubes with an increasing number of layers, keeping the external radius twice as large as internal radius,” said Riedo. “Our experiments show that for nanotubes with small internal radii, increasing the radii makes them softer. This means that for these tubes, the radial rigidity is controlled by the magnitude of the internal radius, whereas the number of layers plays a minor role.”

But, for the nanotubes with larger radii, the elasticity of the nanotubes is almost constant. This could mean that the softening that occurs as the internal radius of a nanotube is increased, is counterbalanced by the stiffening effect that occurs as the number of layers increases, up to the point at which the nanotube’s properties reach those of graphite, she said.

Understanding just how much these nanotubes of various sizes and layers can bend is an important step in the development of nanoelectronics and the nanowires that carry electrical current through them. Recently, a team of scientists at the University of California, Irvine, demonstrated that transistors made of single-walled nanotubes can operate at much faster speeds than traditional transistors. Knowing just how far these tubes can bend may lead to even more efficient nanowires.

Since the team kept the external radius twice the distance as the tubes’ internal radius in this round of tests, Riedo said the next step is to change this ratio and vary the number of layers, while keeping the internal radius constant and vice-versa to see how these changes affect the tubes’ elastic properties.

David Terraso | EurekAlert!
Further information:
http://www.icpa.gatech.edu

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>