Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Huygens Team Releases First Enhanced Mosaics Of Titan

17.05.2005


Scientists on Huygens’ Descent Imager Spectral Radiometer (DISR) experiment have generated new views of Saturn’s giant moon, Titan.

The European Space Agency’s Huygens probe descended onto Titan on January 14, 2005. The University of Arizona-led DISR team released mosaics made from raw, unprocessed images days after Huygens landed, but they continue processing the data.

The team now has produced the first enhanced mosaic images. They used special image projection techniques in combining a series of images taken as Huygens rotated on its axis 20 kilometers, or 12.4 miles, above Titan’s surface. The images are online at the DISR website, http://www.lpl.arizona.edu/~kholso/ and the European Space Agency website, http://www.esa.int/esaCP/index.html



DISR took a series of photographs of the moon’s surface in sets of three, or triplets, as Huygens descended through Titan’s atmosphere. The images partially overlap because the probe rotated during the descent and because the fields-of-view of different cameras overlapped. Scientists used physical features seen in more than one image to piece mosaics together like jigsaw puzzles.

The new mosaics are stereographic and gnomonic (pronounced ’no-mahn-ic’) projections. These are different ways of showing Titan’s three-dimensional surface in two dimensions.

Stereo projection squeezes the entire visible surface into one image, so it shows size, area, distance and perspective of landscape features, said Mike Bushroe of the UA Lunar and Planetary Laboratory, DISR senior staff engineer. Gnomonic projection is the kind found in maps that navigators and aviators use to determine the shortest distance between two points. Gnomonic projection makes the surface appear flat and distorts scale at the map or mosaic outer edges.

In the new stereographic ’fish-eye’ view of Titan’s surface, the bright area to the north (top of image) and west is higher than the rest of the terrain. The bright area is laced with dark lines believed to be drainage channels leading down to what appears to be a shoreline with river deltas and sand bars.

Scientists think the channels are cut by flowing liquid methane. Precipitation run off carved the dense network of narrow channels and features with sharp branching angles, researchers theorize. Sapping or sub-surface flows may have created the short, stubby channels that join at 90-degree angles, they add.

The largest run off channel starts at about the 12 o’clock position from an inlet on the shoreline and stretches to the left. The largest sapping channel starts at the 9 o’clock position and continues in a straight line up and left. The dark wide corridor to the west just below the sapping channel is believed to be a major flow channel that empties into the mud flats of the lakebed.

The bright shapes to the northeast and east look to be ridges of ice gravel that are slightly higher than the flats around them. The probe is thought to have landed just southwest of the semi-circular shape. Researchers can’t yet explain the light and dark areas to the south.

The gnomonic projection was made from images taken as the probe approached the landing site, and as surface features sharpened. North is at the top of the image. What appears to be a ridge of ice boulders thrusting up through darker lakebed material runs between lower left and upper right in this mosaic.

The ice boulders are thought to slow the major flow from the west, causing the fluid to pond on the northwest side of the image and layering the dark material into sediment. Seeps between the boulders cut the sediment into channels as the fluid flows southeast.

University of Arizona Lunar and Planetary Laboratory scientist Martin Tomasko leads the DISR team. Team members are based throughout the United States and Europe, with the largest contributing groups from the UA in the United States, from the Max Planck Institute in Germany, and the Paris Observatory in Meudon, France.

The Cassini-Huygens mission to Saturn and Titan is a joint mission of NASA, the European Space Agency (ESA) and the Italian Space Agency (ASI). ESA supplied and manages the Huygens probe that descended to Titan’s surface Jan. 14, 2005. NASA’s Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA’s Science Mission Directorate in Washington, D.C. NASA funded the Descent Imager-Spectral Radiometer, which was built by Lockheed Martin.

Mike Bushroe | University of Arizona
Further information:
http://www.lpl.arizona.edu

More articles from Physics and Astronomy:

nachricht Temperature-controlled fiber-optic light source with liquid core
20.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht New material for splitting water
19.06.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>