Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST demonstrates key step in use of quantum computers for code-breaking

13.05.2005


This colorized image shows the fluorescence from three trapped beryllium ions illuminated with an ultraviolet laser beam. Black and blue areas indicate lower intensity, and red and white higher intensity. Credit: NIST


A crucial step in a procedure that could enable future quantum computers to break today’s most commonly used encryption codes has been demonstrated by physicists at the U.S. Commerce Department’s National Institute of Standards and Technology (NIST).

As reported in the May 13 issue of the journal Science,* the NIST team showed that it is possible to identify repeating patterns in quantum information stored in ions (charged atoms). The NIST work used three ions as quantum bits (qubits) to represent 1s or 0s--or, under the unusual rules of quantum physics, both 1 and 0 at the same time.

Scientists believe that much larger arrays of such ions could process data in a powerful quantum computer. Previous demonstrations of similar processes were performed with qubits made of molecules in a liquid, a system that cannot be expanded to large numbers of qubits. "Our demonstration is important, because it helps pave the way toward building a large-scale quantum computer," says John Chiaverini, lead author of the paper. "Our approach also requires fewer steps and is more efficient than those demonstrated previously."


The NIST team used electromagnetically trapped beryllium ions as qubits to demonstrate a quantum version of the "Fourier transform" process, a widely used method for finding repeating patterns in data. The quantum version is the crucial final step in Shor’s algorithm, a series of steps for finding the "prime factors" of large numbers--the prime numbers that when multiplied together produce a given number.

Developed by Peter Shor of Bell Labs in 1994, the factoring algorithm sparked burgeoning interest in quantum computing. Modern cryptography techniques, which rely on the fact that even the fastest supercomputers require very long times to factor large numbers, are used to encode everything from military communications to bank transactions. But a quantum computer using Shor’s algorithm could factor a number several hundred digits long in a reasonably short time. This algorithm made code breaking the most important application for quantum computing.

Quantum computing, which harnesses the unusual behavior of quantum systems, offers the possibility of parallel processing on a grand scale. Unlike switches that are either fully on or fully off in today’s computer chips, quantum bits can be on, off, or on and off at the same time. The availability of such "superpositions," in addition to other strange quantum properties, means that a quantum computer could solve certain problems in an exponentially shorter time than a conventional computer with the same number of bits. Researchers often point out that, for specific classes of problems, a quantum computer with 300 qubits has potentially more processing power than a classical computer containing as many bits as there are particles in the universe.

Harnessing all this potential for practical use is extremely difficult. One problem is that measuring a qubit causes its delicate quantum state to collapse, producing an output of an ordinary 1 or 0, without a record of what happened during the computation. Nevertheless, Shor’s algorithm uses these properties to perform a useful task. It enables scientists to analyze the final quantum state after the computation to find repeating patterns in the original input, and to use this information to determine the prime factors of a number.

The work described in the Science paper demonstrated the pattern-finding step of Shor’s algorithm. This demonstration involves fewer and simpler operations than those previously implemented, a significant benefit in designing practical quantum computers.

In the experiments, NIST researchers performed the same series of operations on a set of three beryllium qubits thousands of times. Each set of operations lasted less than 4 milliseconds, and consisted of using ultraviolet laser pulses to manipulate individual ions in sequence, based on measurements of the other ions. Each run produced an output consisting of measurements of each of the three ions. The NIST team has the capability to measure ions’ quantum states precisely and use the results to manipulate other ions in a controlled way, before the delicate quantum information is lost.

The same NIST team has previously demonstrated all the basic components for a quantum computer using ions as qubits, arguably a leading candidate for a large-scale quantum processor. About a dozen different types of quantum systems are under investigation around the world for use in quantum processing, including the approach of using ions as qubits.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Squeezing light at the nanoscale
18.06.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht The Fraunhofer IAF is a »Landmark in the Land of Ideas«
15.06.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>