Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST demonstrates key step in use of quantum computers for code-breaking

13.05.2005


This colorized image shows the fluorescence from three trapped beryllium ions illuminated with an ultraviolet laser beam. Black and blue areas indicate lower intensity, and red and white higher intensity. Credit: NIST


A crucial step in a procedure that could enable future quantum computers to break today’s most commonly used encryption codes has been demonstrated by physicists at the U.S. Commerce Department’s National Institute of Standards and Technology (NIST).

As reported in the May 13 issue of the journal Science,* the NIST team showed that it is possible to identify repeating patterns in quantum information stored in ions (charged atoms). The NIST work used three ions as quantum bits (qubits) to represent 1s or 0s--or, under the unusual rules of quantum physics, both 1 and 0 at the same time.

Scientists believe that much larger arrays of such ions could process data in a powerful quantum computer. Previous demonstrations of similar processes were performed with qubits made of molecules in a liquid, a system that cannot be expanded to large numbers of qubits. "Our demonstration is important, because it helps pave the way toward building a large-scale quantum computer," says John Chiaverini, lead author of the paper. "Our approach also requires fewer steps and is more efficient than those demonstrated previously."


The NIST team used electromagnetically trapped beryllium ions as qubits to demonstrate a quantum version of the "Fourier transform" process, a widely used method for finding repeating patterns in data. The quantum version is the crucial final step in Shor’s algorithm, a series of steps for finding the "prime factors" of large numbers--the prime numbers that when multiplied together produce a given number.

Developed by Peter Shor of Bell Labs in 1994, the factoring algorithm sparked burgeoning interest in quantum computing. Modern cryptography techniques, which rely on the fact that even the fastest supercomputers require very long times to factor large numbers, are used to encode everything from military communications to bank transactions. But a quantum computer using Shor’s algorithm could factor a number several hundred digits long in a reasonably short time. This algorithm made code breaking the most important application for quantum computing.

Quantum computing, which harnesses the unusual behavior of quantum systems, offers the possibility of parallel processing on a grand scale. Unlike switches that are either fully on or fully off in today’s computer chips, quantum bits can be on, off, or on and off at the same time. The availability of such "superpositions," in addition to other strange quantum properties, means that a quantum computer could solve certain problems in an exponentially shorter time than a conventional computer with the same number of bits. Researchers often point out that, for specific classes of problems, a quantum computer with 300 qubits has potentially more processing power than a classical computer containing as many bits as there are particles in the universe.

Harnessing all this potential for practical use is extremely difficult. One problem is that measuring a qubit causes its delicate quantum state to collapse, producing an output of an ordinary 1 or 0, without a record of what happened during the computation. Nevertheless, Shor’s algorithm uses these properties to perform a useful task. It enables scientists to analyze the final quantum state after the computation to find repeating patterns in the original input, and to use this information to determine the prime factors of a number.

The work described in the Science paper demonstrated the pattern-finding step of Shor’s algorithm. This demonstration involves fewer and simpler operations than those previously implemented, a significant benefit in designing practical quantum computers.

In the experiments, NIST researchers performed the same series of operations on a set of three beryllium qubits thousands of times. Each set of operations lasted less than 4 milliseconds, and consisted of using ultraviolet laser pulses to manipulate individual ions in sequence, based on measurements of the other ions. Each run produced an output consisting of measurements of each of the three ions. The NIST team has the capability to measure ions’ quantum states precisely and use the results to manipulate other ions in a controlled way, before the delicate quantum information is lost.

The same NIST team has previously demonstrated all the basic components for a quantum computer using ions as qubits, arguably a leading candidate for a large-scale quantum processor. About a dozen different types of quantum systems are under investigation around the world for use in quantum processing, including the approach of using ions as qubits.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>