Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNC scientists develop promising new X-ray device using carbon nanotubes

12.05.2005


Scientists at the University of North Carolina at Chapel Hill and a UNC start-up company, Xintek, Inc., have invented a new X-ray device based on carbon nanotubes that emits a scanning X-ray beam composed of multiple smaller beams while also remaining stationary.



As a result, the device can create images of objects from numerous angles and without mechanical motion, which is a distinct advantage for any machine since it increases imaging speed, can reduce the size of the device and requires less maintenance.

A report on the promising invention appears in this week’s issue (May 9) of Applied Physics Letters, a science and technology journal. The physicists already have received U.S. patents on elements of the work and expect more to be granted.


"This technology can lead to smaller and faster X-ray imaging systems for airport baggage screening and for tomographic medical imaging such as CT (computed tomography) scanners," said Dr. Otto Zhou, Lyle Jones distinguished professor of physics and materials sciences in UNC’s College of Arts and Sciences.

"We believe this is an important advance in X-ray technology, and we are extremely excited about it," Zhou said. "If it works as well as we think it will, other advantages will be that scanners will be cheaper, use less electricity and produce higher-resolution images."

Other authors of the paper are physics doctoral students Jian Zhang and Guang Yang and Dr. Jian Ping Lu, professor of physics and astronomy at UNC, Dr. Yueh Z. Lee of the UNC School of Medicine and Dr. Yuan Cheng, Dr. Bo Gao and Qi Qiu of Xintek, Inc., a Research Triangle Park, N.C.-based nanotechnology company.

Scientists and others, including the news media, have shown strong interest in carbon nanotubes because of numerous potential applications, Zhou said. Discovered about a decade ago, the tiny bits of carbon are very strong tubular structures formed from a single layer of carbon atoms and are only about a billionth of a meter in diameter.

Industrial and university researchers around the world are now developing new devices using the nanotubes, such as field emission flat panel displays, high-strength composites and high energy-density batteries.

The UNC researchers demonstrated that carbon nanotubes might be used as X-ray sources and received their first patent in 2000. Prior to that, conventional X-ray tube design had not changed much in a century.

The nanotube X-ray technology allows the device to be operated at room temperature rather than at the 1,000 degrees Celsius that conventional sources require. It can also be operated as a high-speed X-ray camera, capturing clear images of objects moving at high speed. The team has now received two U.S. patents on the general concepts of nanotube X-rays. Xintek, the UNC spin-off, is working with several manufacturers to commercialize the technology.

"When fully developed, devices should lead to more effective imaging systems for homeland security," Zhou said.

The new invention can create images of various objects from numerous angles without mechanical motion, he said.

In conventional CT scanners used in airports for baggage screening and in hospitals for diagnostic imaging, the X-ray source is mechanically rotated around objects, including patients, to collect the many projection images required to construct a three-dimensional picture, Zhou said. Existing scanners are large and expensive.

"In addition, the imaging speed is relatively low," he said. "The new scanning X-ray source using nanotubes can electronically produce X-ray beams from different angles without moving. This can significantly increase the imaging speed and reduce the size of the scanner. Making this technology smaller, faster and more accurate should boost the effectiveness of airport baggage scanners significantly."

Xintek Inc., which seeks to develop new industrial and medical applications for carbon nanotubes, resulted from Zhou’s group’s work. Support for the research has come from the U.S. Transportation Safety Administration, the National Institutes of Health and private sources.

David Williamson | EurekAlert!
Further information:
http://www.unc.edu

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>