Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New moon making waves

12.05.2005


The NASA/ESA/ASI Cassini spacecraft has confirmed earlier suspicions of an unseen moon hidden in a gap in Saturn’s outer A ring. A new image shows the new moon and the waves it raises in the surrounding ring material.


New wave-making moon S/2005 S1 - Credit: NASA/JPL/Space Science Institute



The moon, provisionally named S/2005 S1, was first seen in a time-lapse sequence of images taken on 1 May 2005, as Cassini began its climb to higher inclinations in orbit around Saturn. A day later, an even closer view was obtained, which allowed the moon’s size and brightness to be measured.

The images show the tiny object in the centre of the Keeler gap and the wavy patterns in the gap edges that are generated by the moon’s gravitational influence. The Keeler gap is located about 250 kilometres inside the outer edge of the A ring, which is also the outer edge of the bright main rings.


The new object, or ’moonlet’, is about 7 kilometres across and reflects about half the light falling on it - a brightness that is typical of the particles in the nearby rings. It orbits approximately 136 505 kilometres from the centre of Saturn. More Cassini observations will be needed to determine whether the moon’s orbit around Saturn is circular or ’eccentric’(like an oval).

S/2005 S1 is the second known moon to exist within Saturn’s rings. The other is Pan, 25 kilometres across, which orbits in the Encke gap. Atlas and other moons exist outside the main ring system, as do the two F ring ’shepherd’ moons, Prometheus and Pandora.

Imaging scientists had predicted the new moon’s presence and its orbital distance from Saturn after last July’s sighting of a set of peculiar spiky and wispy features in the Keeler gap’s outer edge. The similarities of the Keeler gap features to those noted in Saturn’s F ring and the Encke gap led imaging scientists to conclude that a small body, a few kilometres across, was lurking in the centre of the Keeler gap, awaiting discovery.

"The obvious effect of this moon on the surrounding ring material will allow us to determine its mass and test our understanding of how rings and moons affect one another," said Dr Carl Murray, imaging team member from Queen Mary College, University of London.

An estimate of the moon’s mass, along with a measure of its size, yields information on its physical composition. For instance, the new moonlet might be porous, like an orbiting icy rubble pile. Other moons near the outer edge of Saturn’s rings such as Atlas, Prometheus and Pandora are also porous. Whether a moon is porous or dense says something about how it was formed and its subsequent collision history.

"Some of the most illuminating dynamical systems we might hope to study with Cassini are those involving moons embedded in gaps," said Dr Carolyn Porco, imaging team leader at the Space Science Institute.

"By examining how such a body interacts with its companion ring material, we can learn something about how the planets in our solar system might have formed out of the nebula of material that surrounded the Sun long ago. We anticipate that many of the gaps in Saturn’s rings have embedded moons, and we’ll be in search of them from here on."

The Cassini-Huygens mission is a co-operative project of NASA, ESA and ASI, the Italian space agency.

Monica Talevi | alfa
Further information:
http://www.esa.int/SPECIALS/Cassini-Huygens/SEM1XQ5TI8E_0.html

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>