Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cassini finds new Saturn moon that makes waves


In a spectacular kick-off to its first season of prime ring viewing, which began last month, the Cassini spacecraft has confirmed earlier suspicions of an unseen moon hidden in a gap in Saturn’s outer A ring. A new image and movie show the new moon and the waves it raises in the surrounding ring material.

The moon, provisionally named S/2005 S1, was first seen in a time-lapse sequence of images taken on May 1, 2005, as Cassini began its climb to higher inclinations in orbit around Saturn. A day later, an even closer view was obtained, which has allowed a measure of the moon’s size and brightness.

The new images can be seen at, and

The images show the tiny object in the center of the Keeler gap and the wavy patterns in the gap edges that are generated by the moon’s gravitational influence. The Keeler gap is located about 250 kilometers (155 miles) inside the outer edge of the A ring, which is also the outer edge of the bright main rings. The new object is about 7 kilometers (4 miles) across and reflects about half the light falling on it -- a brightness that is typical of the particles in the nearby rings.

"It’s too early to make out the shape of the orbit, but what we’ve seen so far of its motion suggests that it is very near the exact center of the gap, just as we had surmised," said Dr. Joseph Spitale, imaging team associate and planetary scientist at the Space Science Institute in Boulder, Colo. The new moonlet orbits approximately 136,505 kilometers (84,820 miles) from the center of Saturn. More Cassini observations will be needed to determine whether the moon’s orbit around Saturn is circular or eccentric.

S/2005 S1 is the second known moon to exist within Saturn’s rings. The other is Pan, 25 kilometers (16 miles) across, which orbits in the Encke gap. Atlas and other moons exist outside the main ring system, as do the two F ring shepherd moons, Prometheus and Pandora.

Imaging scientists had predicted the new moon’s presence and its orbital distance from Saturn after last July’s sighting of a set of peculiar spiky and wispy features in the Keeler gap’s outer edge. The similarities of the Keeler gap features to those noted in Saturn’s F ring and the Encke gap led imaging scientists to conclude that a small body, a few kilometers across, was lurking in the center of the Keeler gap, awaiting discovery.

"The obvious effect of this moon on the surrounding ring material will allow us to determine its mass and test our understanding of how rings and moons affect one another," said Dr. Carl Murray, imaging team member from Queen Mary, University of London. An estimate of the moon’s mass, along with a measure of its size, yields information on its physical makeup. For instance, the new moonlet might be quite porous, like an orbiting icy rubble pile. Other moons near the outer edge of Saturn’s rings -- like Atlas, Prometheus and Pandora -- are also porous. Whether a moon is porous or dense says something about how it was formed and its subsequent collision history.

The Keeler gap edges also bear similarities to the scalloped edges of the 322-kilometer-wide (200-mile) Encke gap, where Pan resides. From the size of the waves seen in the Encke gap, imaging scientists were able to estimate the mass of Pan. They expect to do the same eventually with this new moon.

"Some of the most illuminating dynamical systems we might hope to study with Cassini are those involving moons embedded in gaps," said Dr. Carolyn Porco, imaging team leader at the Space Science Institute. "By examining how such a body interacts with its companion ring material, we can learn something about how the planets in our solar system might have formed out of the nebula of material that surrounded the Sun long ago. We anticipate that many of the gaps in Saturn’s rings have embedded moons, and we’ll be in search of them from here on."

Additional closer observations of the new body may take place in the next several months, as Cassini continues its intensive survey of Saturn’s beautiful and mysterious rings.

Preston Dyches | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>