Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cassini finds new Saturn moon that makes waves

11.05.2005


In a spectacular kick-off to its first season of prime ring viewing, which began last month, the Cassini spacecraft has confirmed earlier suspicions of an unseen moon hidden in a gap in Saturn’s outer A ring. A new image and movie show the new moon and the waves it raises in the surrounding ring material.

The moon, provisionally named S/2005 S1, was first seen in a time-lapse sequence of images taken on May 1, 2005, as Cassini began its climb to higher inclinations in orbit around Saturn. A day later, an even closer view was obtained, which has allowed a measure of the moon’s size and brightness.

The new images can be seen at ciclops.org, saturn.jpl.nasa.gov and www.nasa.gov/cassini.



The images show the tiny object in the center of the Keeler gap and the wavy patterns in the gap edges that are generated by the moon’s gravitational influence. The Keeler gap is located about 250 kilometers (155 miles) inside the outer edge of the A ring, which is also the outer edge of the bright main rings. The new object is about 7 kilometers (4 miles) across and reflects about half the light falling on it -- a brightness that is typical of the particles in the nearby rings.

"It’s too early to make out the shape of the orbit, but what we’ve seen so far of its motion suggests that it is very near the exact center of the gap, just as we had surmised," said Dr. Joseph Spitale, imaging team associate and planetary scientist at the Space Science Institute in Boulder, Colo. The new moonlet orbits approximately 136,505 kilometers (84,820 miles) from the center of Saturn. More Cassini observations will be needed to determine whether the moon’s orbit around Saturn is circular or eccentric.

S/2005 S1 is the second known moon to exist within Saturn’s rings. The other is Pan, 25 kilometers (16 miles) across, which orbits in the Encke gap. Atlas and other moons exist outside the main ring system, as do the two F ring shepherd moons, Prometheus and Pandora.

Imaging scientists had predicted the new moon’s presence and its orbital distance from Saturn after last July’s sighting of a set of peculiar spiky and wispy features in the Keeler gap’s outer edge. The similarities of the Keeler gap features to those noted in Saturn’s F ring and the Encke gap led imaging scientists to conclude that a small body, a few kilometers across, was lurking in the center of the Keeler gap, awaiting discovery.

"The obvious effect of this moon on the surrounding ring material will allow us to determine its mass and test our understanding of how rings and moons affect one another," said Dr. Carl Murray, imaging team member from Queen Mary, University of London. An estimate of the moon’s mass, along with a measure of its size, yields information on its physical makeup. For instance, the new moonlet might be quite porous, like an orbiting icy rubble pile. Other moons near the outer edge of Saturn’s rings -- like Atlas, Prometheus and Pandora -- are also porous. Whether a moon is porous or dense says something about how it was formed and its subsequent collision history.

The Keeler gap edges also bear similarities to the scalloped edges of the 322-kilometer-wide (200-mile) Encke gap, where Pan resides. From the size of the waves seen in the Encke gap, imaging scientists were able to estimate the mass of Pan. They expect to do the same eventually with this new moon.

"Some of the most illuminating dynamical systems we might hope to study with Cassini are those involving moons embedded in gaps," said Dr. Carolyn Porco, imaging team leader at the Space Science Institute. "By examining how such a body interacts with its companion ring material, we can learn something about how the planets in our solar system might have formed out of the nebula of material that surrounded the Sun long ago. We anticipate that many of the gaps in Saturn’s rings have embedded moons, and we’ll be in search of them from here on."

Additional closer observations of the new body may take place in the next several months, as Cassini continues its intensive survey of Saturn’s beautiful and mysterious rings.

Preston Dyches | EurekAlert!
Further information:
http://www.ciclops.org

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>