Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PNNL seeks maxi space exploration via mini technology

09.05.2005


Lab to develop more economical and reliable space travel



Images of deep space exploration in old sci-fi movies will take one giant leap toward reality as Battelle scientists manipulate microtechnology to produce rocket propellant in space and breathing oxygen for interplanetary travel, thanks to new funding from NASA.

Scientists at Pacific Northwest National Laboratory in Richland, Wash., which is operated by Battelle for the Department of Energy, will launch the development of a lightweight and extraordinarily compact system for NASA applications. These microchemical and thermal systems, also known as MicroCATS, configure such things as microchannel absorbers, reactors, separators and heat exchangers to produce the propellant from resources found on Mars and the moon. In addition, the system also will be designed to regenerate breathable air for life support. The NASA contract is valued at $13.7 million over four years.


"Further development of the microchannel architecture makes this all feasible," says Kriston Brooks, PNNL principal investigator. "Our ultimate goal is then to use the same microtechnology principles on a larger scale to provide propellant for a manned mission to Mars in the 2030 timeframe."

PNNL’s mission supports the President’s new vision for space exploration. President Bush pledged to return to the moon by 2020 in preparation for future human exploration of Mars and other distant destinations in his January 2004 address at NASA headquarters. "The contract is four times larger than any PNNL has previously had with NASA," says Martin Kress, Battelle’s NASA relationship manager. "We hope this technology system ushers in an entirely new approach for lunar and Martian exploration and habitation," Kress added.

The compact microtechnology processing station, referred to as ISPP, the In Situ Propellant Production system, will collect carbon dioxide from the Martian atmosphere and have it react with hydrogen gas to produce methane fuel and oxygen forming the propellant for the return voyage. "Additionally, by collecting and reconditioning exhaled air, the system will produce pure oxygen for crew members; a problem that nearly doomed the Apollo 13 mission," noted Brooks. Both methane and oxygen also can be used to generate electrical power for vital life support systems making this capability central to a manned outer space infrastructure.

"Since the system uses modular banks of identical microchannel components, there is a built-in redundancy achieving enhanced safety and reliability," stated Brooks. "We anticipate increased system efficiency as well as improved economic benefits when the research is complete."

Microchannel technology generally has at least one dimension that is 200 microns or less in size – a human hair is about 20-50 microns. Due to improved heat and mass transfer rates, the microtechnology process can be intensified, resulting in significant size reductions over conventional hardware. At these small scales, hydrodynamic, surface, and interfacial forces dominate, allowing the devices to operate independent of gravity. Gravity independence and reduced size and weight make microtechnology an ideal candidate for many NASA applications.

"We also hope to demonstrate the concept of making use of resources found both on the moon and Mars, not only for propellant and breathing air, but ultimately to build a community in space," says Brooks. "For instance, silica, iron and titanium retrieved from soil on the moon could be used to produce photovoltaics capable of generating electricity, and producing metals for building construction and other manufacturing processes." Brooks admits that these capabilities are still conceptual, but says that by demonstrating the next generation of microchannel technology for ISPP, researchers may be able to advance these capabilities as well.

The technology’s system components will be tested individually, as well as in a combined integrated system in a single "bread-board" configuration. The analysis will be performed at NASA centers using an atmospheric chamber to simulate the low temperatures and extremely low atmospheric pressure typical of Mars and the moon, and using reduced gravity parabolic flights to simulate low gravity.

PNNL will coordinate parts of this research with Oregon State University via the Microproducts Breakthrough Institute. MBI is a collaboration between PNNL and OSU, and is affiliated with ONAMI, the Oregon Nanoscience and Microtechnology Institute.

PNNL is a DOE Office of Science laboratory that solves complex problems in energy, national security, the environment and life sciences by advancing the understanding of physics, chemistry, biology and computation. PNNL employs more than 4,000 staff, has a $650 million annual budget, and has been managed by Ohio-based Battelle since the lab’s inception in 1965.

Geoff Harvey | EurekAlert!
Further information:
http://www.pnl.gov

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>